Faculty Opinions recommendation of Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.

Author(s):  
Christian Mühlfeld ◽  
Christina Brandenberger
Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5967-5974 ◽  
Author(s):  
Manuela Aragno ◽  
Raffaella Mastrocola ◽  
Claudio Medana ◽  
Maria Graziella Catalano ◽  
Ilenia Vercellinatto ◽  
...  

Oxidative stress plays a key role in the pathogenesis of diabetic cardiomyopathy, which is characterized by myocyte loss and fibrosis, finally resulting in heart failure. The study looked at the downstream signaling whereby oxidative stress leads to reduced myocardial contractility in the left ventricle of diabetic rats and the effects of dehydroepiandrosterone (DHEA), which production is suppressed in the failing heart and prevents the oxidative damage induced by hyperglycemia in several experimental models. DHEA was given orally at a dose of 4 mg/rat per day for 21 d to rats with streptozotocin (STZ)-induced diabetes and genetic diabetic-fatty (ZDF) rats. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, cardiac myogenic factors, and myosin heavy-chain gene expression were determined in the left ventricle of treated and untreated STZ-diabetic rats and ZDF rats. Oxidative stress induced by chronic hyperglycemia increased AGE and AGE receptors and led to activation of the pleoitropic transcription factor nuclear factor-κB. Nuclear factor-κB activation triggered a cascade of signaling, which finally led to the switch in the cardiac myosin heavy-chain (MHC) gene expression from the α-MHC isoform to the β-MHC isoform. DHEA treatment, by preventing the activation of the oxidative pathways induced by hyperglycemia, counteracted the enhanced AGE receptor activation in the heart of STZ-diabetic rats and ZDF rats and normalized downstream signaling, thus avoiding impairment of the cardiac myogenic factors, heart autonomic nervous system and neural crest derivatives (HAND) and myogenic enhancer factor-2, and the switch in MHC gene expression, which are the early events in diabetic cardiomyopathy.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 856
Author(s):  
Eui-Jeong Han ◽  
Ilekuttige Priyan Shanura Fernando ◽  
Hyun-Soo Kim ◽  
Dae-Sung Lee ◽  
Areum Kim ◽  
...  

The present study evaluated the effects of (–)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (–)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (–)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (–)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (–)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (–)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Waleska C. Dornas ◽  
Leonardo M. Cardoso ◽  
Maísa Silva ◽  
Natália L. S. Machado ◽  
Deoclécio A. Chianca ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1665 ◽  
Author(s):  
Rui Liu ◽  
Qi-He Chen ◽  
Jin-Wei Ren ◽  
Bin Sun ◽  
Xia-Xia Cai ◽  
...  

Panax ginseng C.A. Meyer (ginseng) is an edible and traditional medicinal herb, which is reported to have a wide range of biological activity and pharmaceutical properties. There were more studies on ginsenoside and polysaccharides, but fewer on ginseng oligopeptides (GOPs), which are small molecule oligopeptides extracted from ginseng. The present study was designed to investigate the effects and underlying mechanism of ginseng oligopeptide (GOPs) on binge drinking-induced alcohol damage in rats. Sprague Dawley rats were randomly assigned to six groups (n = 10), rats in normal control group and alcohol model group was administered distilled water; rats in four GOPs intervention groups (at a dose of 0.0625, 0.125, 0.25, 0.5 g/kg of body weight, respectively) were administered GOPs once a day for 30 days. Experiment rats were intragastrically administered ethanol at a one-time dose of 7 g/kg of body weight after 30 days. The liver injury was measured through traditional liver enzymes, inflammatory cytokines, expression of oxidative stress markers, and histopathological examination. We found that the GOPs treatment could significantly improve serum alanine aminotransferase and aspartate aminotransferase, plasma lipopolysaccharide, and inflammatory cytokine levels, as well as the oxidative stress markers that were altered by alcohol. Moreover, GOPs treatment inhibited the protein expression of toll-like receptor 4, and repressed the inhibitor kappa Bα and nuclear factor-κB p65 in the liver. These findings suggested that GOPs have a significant protective effect on binge drinking-induced liver injury, and the mechanism possibly mediated by the partial inhibition of lipopolysaccharide—toll-like receptor 4-nuclear factor-κB p65 signaling in the liver.


2007 ◽  
Vol 67 (1) ◽  
pp. 362-370 ◽  
Author(s):  
Sankar Bhattacharyya ◽  
Debaprasad Mandal ◽  
Gouri Sankar Sen ◽  
Suman Pal ◽  
Shuvomoy Banerjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document