scholarly journals Comparative Transcriptomic Analysis of Immune-Related Gene Expression in Duck Embryo Fibroblasts Following Duck Tembusu Virus Infection

2018 ◽  
Vol 19 (8) ◽  
pp. 2328 ◽  
Author(s):  
Guanliu Yu ◽  
Yun Lin ◽  
Yi Tang ◽  
Youxiang Diao

Duck is a major waterfowl species in China, providing high-economic benefit with a population of up to 20–30 billion per year. Ducks are commonly affected by severe diseases, including egg-drop syndrome caused by duck Tembusu virus (DTMUV). The immune mechanisms against DTMUV invasion and infection remain poorly understood. In this study, duck embryo fibroblasts (DEFs) were infected with DTMUV and harvested at 12 and 24 h post-infection (hpi), and their genomes were sequenced. In total, 911 (764 upregulated and 147 downregulated genes) and 3008 (1791 upregulated and 1217 downregulated) differentially expressed genes (DEGs) were identified at 12 and 24 hpi, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that DEGs were considerably enriched in immune-relevant pathways, including Toll-like receptor signaling pathway, Cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway, Chemokine signaling pathway, NOD-like receptor signaling pathway, and Hematopoietic cell lineage at both time points. The key DEGs in immune system included those of the cytokines (IFN α2, IL-6, IL-8L, IL-12B, CCR7, CCL19, and CCL20), transcription factors or signaling molecules (IRF7, NF-κB, STAT1, TMEM173, and TNFAIP3), pattern recognition receptors (RIG-I and MDA5), and antigen-presenting proteins (CD44 and CD70). This suggests DTMUV infection induces strong proinflammatory/antiviral effects with enormous production of cytokines. However, these cytokines could not protect DEFs against viral attack. Our data revealed valuable transcriptional information regarding DTMUV-infected DEFs, thereby broadening our understanding of the immune response against DTMUV infection; this information might contribute in developing strategies for controlling the prevalence of DTMUV infection.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Chun-long Zheng ◽  
Qiang Lu ◽  
Nian Zhang ◽  
Peng-yu Jing ◽  
Ji-peng Zhang ◽  
...  

More and more studies have indicated an association between immune infiltration in lung cancer and clinical outcomes. Matrix metalloproteinase 14 (MMP14) has been reported to be dysregulated in many types of tumors and involved in the development and progression of tumors. However, its contribution to cancer immunity was rarely reported. In the study, we found that MMP14 expression was distinctly upregulated in lung cancer specimens compared with nontumor lung specimens. High MMP14 expression predicted a poor prognosis of lung squamous cell carcinoma (LUSC) patients. Increased MMP14 expressions were observed to be positively related to high immune infiltration levels in most of the immune cells. A pathway enrichment analysis of 32 MMP14-associated immunomodulators indicated the involvement of T cell receptor signaling pathway and Toll-like receptor signaling pathway. Based on MMP14-associated immunomodulators, we applied multivariate assays to construct multiple-gene risk prediction signatures. We observed that risk scores were independently associated with overall survival. These data highlighted that MMP14 was involved in tumor immunity, indicating that MMP14 could serve as a novel prognostic biomarker and therapeutic target for lung cancer. Our data suggest that the four genes identified in this study may serve as valuable biomarkers of lung cancer patient outcomes.



2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lin Bu ◽  
Zi-wen Wang ◽  
Shu-qun Hu ◽  
Wen-jing Zhao ◽  
Xiao-juan Geng ◽  
...  

Neonatal sepsis is one of the most prevalent causes of death of the neonates. However, the mechanisms underlying neonatal sepsis remained unclear. The present study identified a total of 1128 upregulated mRNAs and 1008 downregulated mRNAs, 28 upregulated lncRNAs, and 61 downregulated lncRNAs in neonatal sepsis. Then, we constructed PPI networks to identify key regulators in neonatal sepsis, including ITGAM, ITGAX, TLR4, ITGB2, SRC, ELANE, RPLP0, RPS28, RPL26, and RPL27. lncRNA coexpression analysis showed HS.294603, LOC391811, C12ORF47, LOC729021, HS.546375, HNRPA1L-2, LOC158345, and HS.495041 played important roles in the progression of neonatal sepsis. Bioinformatics analysis showed DEGs were involved in the regulation cellular extravasation, acute inflammatory response, macrophage activation of NF-kappa B signaling pathway, TNF signaling pathway, HIF-1 signaling pathway, Toll-like receptor signaling pathway, and ribosome, RNA transport, and spliceosome. lncRNAs were involved in regulating ribosome, T cell receptor signaling pathway, RNA degradation, insulin resistance, ribosome biogenesis in eukaryotes, and hematopoietic cell lineage. We thought this study provided useful information for identifying novel therapeutic markers for neonatal sepsis.



2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Zhou ◽  
Lei Ma ◽  
Zaixiao Rao ◽  
Yaqian Li ◽  
Huijun Zheng ◽  
...  

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that has caused a substantial drop in egg production and severe neurological disorders in domestic waterfowl. Several studies have revealed that viral proteins encoded by DTMUV antagonize host IFN-mediated antiviral responses to facilitate virus replication. However, the role of host gene expression regulated by DTMUV in innate immune evasion remains largely unknown. Here, we utilized a stable isotope labeling with amino acids in cell culture (SILAC)-based proteomics analysis of DTMUV-infected duck embryo fibroblasts (DEFs) to comprehensively investigate host proteins involved in DTMUV replication and innate immune response. A total of 250 differentially expressed proteins were identified from 2697 quantified cellular proteins, among which duck interferon-induced protein 35 (duIFI35) was dramatically up-regulated due to DTMUV infection in DEFs. Next, we demonstrated that duIFI35 expression promoted DTMUV replication and impaired Sendai virus-induced IFN-β production. Moreover, duIFI35 was able to impede duck RIG-I (duRIG-I)-induced IFN-β promoter activity, rather than IFN-β transcription mediated by MDA5, MAVS, TBK1, IKKϵ, and IRF7. Importantly, we found that because of the specific interaction with duIFI35, the capacity of duRIG-I to recognize double-stranded RNA was significantly impaired, resulting in the decline of duRIG-I-induced IFN-β production. Taken together, our data revealed that duIFI35 expression stimulated by DTMUV infection disrupted duRIG-I-mediated host antiviral response, elucidating a distinct function of duIFI35 from human IFI35, by which DTMUV escapes host innate immune response, and providing information for the design of antiviral drug.



2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongwei Wu ◽  
Lijing Fan ◽  
Haiping Liu ◽  
Baozhang Guan ◽  
Bo Hu ◽  
...  

The present techniques of clinical and histopathological diagnosis hardly distinguish chromophobe renal cell carcinoma (ChRCC) from renal oncocytoma (RO). To identify differentially expressed genes (DEGs) as effective biomarkers for diagnosis and prognosis of ChRCC and RO, three mRNA microarray datasets (GSE12090, GSE19982, and GSE8271) were downloaded from the GEO database. Functional enrichment analysis of DEGs was performed by DAVID. STRING and Cytoscape were applied to construct the protein-protein interaction (PPI) network and key modules of DEGs. Visualized plots were conducted by the R language. We downloaded clinical data from the TCGA database and the influence of key genes on the overall survival of ChRCC was performed by Kaplan–Meier and Cox analyses. Gene set enrichment analysis (GSEA) was utilized in exploring the function of key genes. A total of 79 DEGs were identified. Enrichment analyses revealed that the DEGs are closely related to tissue invasion and metastasis of cancer. Subsequently, 14 hub genes including ESRP1, AP1M2, CLDN4, and CLDN7 were detected. Kaplan–Meier analysis indicated that the low expression of CLDN7 and GNAS was related to the worse overall survival in patients with ChRCC. Univariate Cox analysis showed that CLDN7 might be a helpful biomarker for ChRCC prognosis. Subgroup analysis revealed that the expression of CLDN7 showed a downtrend with the development of the clinical stage, topography, and distant metastasis of ChRCC. GSEA analysis identified that cell adhesion molecules cams, B cell receptor signaling pathway, T cell receptor signaling pathway, RIG-I like receptor signaling pathway, Toll-like receptor signaling pathway, and apoptosis pathway were associated with the expression of CLDN7. In conclusion, ESRP1, AP1M2, CLDN4, PRSS8, and CLDN7 were found to distinguish ChRCC from RO. Besides, the low expression of CLDN7 was closely related to ChRCC progression and could serve as an independent risk factor for the overall survival in patients with ChRCC.



Aging ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 17503-17527
Author(s):  
Yuhong Pan ◽  
Anchun Cheng ◽  
Xingcui Zhang ◽  
Mingshu Wang ◽  
Shun Chen ◽  
...  


2020 ◽  
Vol 7 ◽  
Author(s):  
Cong Zhang ◽  
Ying Liao ◽  
Zhihao Liu ◽  
Lijin Zeng ◽  
Zhihua Peng ◽  
...  

BackgroundTo this day, the molecular mechanism of endotoxin-induced multi-organ failure has not been completely clarified. This study aimed to construct an miRNA-mRNA regulatory network and identify main pathways and key genes in multi-organ of LPS-mediated endotoxemic mice.MethodsPublic datasets from six mRNA and three miRNA microarray datasets were downloaded from the GEO website to screen final differentially expressed genes (FDEGs) and hub genes in the heart, lung, liver, and kidney of LPS-mediated endotoxemic mice. Functional and pathway enrichment analysis of FDEGs was used to identify the main pathways in multi-organ damage of LPS-treated mice. Finally, hub genes of each organ were intersected to obtain the key genes of multi-organ.ResultsFirstly, 158, 358, 299, and 91 FDEGs were identified in the heart, lung, liver, and kidney, respectively. The pathway enrichment analysis of the FDEGs then showed that the TNF signaling pathway, Toll-like receptor signaling pathway, and some viral-infection-related pathways (influenza A, measles, and herpes simplex) were the main pathways in multi-organ damage of LPS-mediated endotoxemic mice. Moreover, miRNA-mRNA or PPI regulatory networks were constructed based on FDEGs. According to these networks, 31, 34, 34, and 31 hub genes were identified in the heart, lung, liver, and kidney, respectively. Among them, nine key genes (Cd274, Cxcl1, Cxcl9, Icam1, Ifit2, Isg15, Stat1, Tlr2, and Usp18) were enriched in Toll-like receptor signaling pathway and chemokine signaling pathway. Finally, seven potential drugs were predicted based on these key genes.ConclusionThe shared underlying molecular pathways in endotoxin-induced multi-organ damage that have been identified include Toll-like receptor signaling pathway and TNF signaling pathway. Besides, nine key genes (Cd274, Cxcl1, Cxcl9, Icam1, Ifit2, Isg15, Stat1, Tlr2, and Usp18) and seven potential drugs were identified. Our data provide a new sight and potential target for future therapy in endotoxemia-induced multi-organ failure.



2017 ◽  
Vol 27 (2) ◽  
pp. 57-69 ◽  
Author(s):  
Alexey V. Polonikov ◽  
Olga Yu. Bushueva ◽  
Irina V. Bulgakova ◽  
Maxim B. Freidin ◽  
Mikhail I. Churnosov ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document