scholarly journals TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties

2019 ◽  
Vol 20 (2) ◽  
pp. 371 ◽  
Author(s):  
Justyna Startek ◽  
Brett Boonen ◽  
Karel Talavera ◽  
Victor Meseguer

Transient Receptor Potential ion channels (TRPs) have been described as polymodal sensors, being responsible for transducing a wide variety of stimuli, and being involved in sensory functions such as chemosensation, thermosensation, mechanosensation, and photosensation. Mechanical and chemical stresses exerted on the membrane can be transduced by specialized proteins into meaningful intracellular biochemical signaling, resulting in physiological changes. Of particular interest are compounds that can change the local physical properties of the membrane, thereby affecting nearby proteins, such as TRP channels, which are highly sensitive to the membrane environment. In this review, we provide an overview of the current knowledge of TRP channel activation as a result of changes in the membrane properties induced by amphipathic structural lipidic components such as cholesterol and diacylglycerol, and by exogenous amphipathic bacterial endotoxins.

2018 ◽  
Vol 11 (4) ◽  
pp. 100 ◽  
Author(s):  
Zili Xie ◽  
Hongzhen Hu

Although acute itch has a protective role by removing irritants to avoid further damage, chronic itch is debilitating, significantly impacting quality of life. Over the past two decades, a considerable amount of stimulating research has been carried out to delineate mechanisms of itch at the molecular, cellular, and circuit levels. There is growing evidence that transient receptor potential (TRP) channels play important roles in itch signaling. The purpose of this review is to summarize our current knowledge about the role of TRP channels in the generation of itch under both physiological and pathological conditions, thereby identifying them as potential drug targets for effective anti-itch therapies.


2007 ◽  
Vol 35 (1) ◽  
pp. 84-85 ◽  
Author(s):  
R. Schindl ◽  
C. Romanin

The large family of mammalian TRP (transient receptor potential) ion channels encompasses diverse sensory functions. TRP proteins consist of six transmembrane domains, with a pore–loop motif between the fifth and sixth domains and cytosolic N- and C-termini. The intracellular strands not only interact with various proteins and lipids, but also include essential multimerization regions. This review summarizes the current knowledge of the intrinsic assembly domains that assure tetrameric TRP channel formation.


2010 ◽  
Vol 10 ◽  
pp. 1597-1611 ◽  
Author(s):  
Carl Van Haute ◽  
Dirk De Ridder ◽  
Bernd Nilius

This review gives an overview of morphological and functional characteristics in the human prostate. It will focus on the current knowledge about transient receptor potential (TRP) channels expressed in the human prostate, and their putative role in normal physiology and prostate carcinogenesis. Controversial data regarding the expression pattern and the potential impact of TRP channels in prostate function, and their involvement in prostate cancer and other prostate diseases, will be discussed.


2020 ◽  
Vol 21 (5) ◽  
pp. 1877 ◽  
Author(s):  
Paulina Stokłosa ◽  
Anna Borgström ◽  
Sven Kappel ◽  
Christine Peinelt

Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.


2013 ◽  
Vol 6 (1) ◽  
pp. 8-9
Author(s):  
Man-Kyo Chung

Management of chronic and pathological pain without incurring systemic side effects is a major medical challenge.Currently available drugs, such as non-steroidal anti-inflammatory drugs or opioid agonists, are efficacious through peripheral and central mechanisms. However, various complications and development of tolerance are serious problems. Other classes of drugs, such as anti-depressants and anti-convulsants, are often used for multiple pain syndromes. However, the efficacy of these drugs is commonly unsatisfactory, and their mechanism of action is not clear. For establishing novel, selective anti-hyperalgesic therapeutic approaches, targeted inhibition of pain-specific pathways or molecules would be ideal, and these approaches suggest straightforward strategies. A new era of exploring such “straightforward” approaches was opened with regard to peripheral nociceptors by the identification of the vanilloid receptor-1 (VR-1), which was designated transient receptor potential channel vanilloid subtype 1 (TRPV1). TRPV1 is a receptor for capsaicin, proton, and noxious heat. Capsaicin has long been known to be a natural compound capable of evoking an intense burning sensation and pain in human and experimental animals. It has been hypothesized that specific manipulation of TRPV1 may selectively relieve pain under injury or inflammatory conditions. Interfering with TRPV1 has been a central focus of these efforts during the 15 years following the cloning of TRPV1. Numerous pharmacological compounds have been developed targeting TRPV1. The characteristics and roles of TRPV1 have been rigorously studied using multiple approaches ranging from biophysical characterization to clinical trials in human subjects. Meanwhile, other members of the TRP channel family in addition to TRPV1 have been suggested to be also involved in nociception under pathophysiological conditions. These studies have identified targets in addition to TRPV1 as potential candidates for selective anti-hyperalgesic treatment free from complications. In this special issue of The Open Pain Journal, current knowledge regarding the roles of various TRP channels in pain is reviewed. Multiple scientists in academia and the pharmaceutical industry took part in this exciting project, and have shared their opinions regarding the prospects for relieving pain through targeting TRP channels. In the opening chapter, “Changes in TRP channels expression in painful conditions,” Bishnoi and Premkumar summarize the involvement of various members of the TRP channel family in nociception. The five following chapters are devoted to a discussion of the role of various TRP channels in specific pathological conditions. Blackshaw and colleagues review the evidence for the roles of “TRP channels in visceral pain.” They discuss the contribution of TRP channels, especially TRPV1, TRPV4, TRPA1, and TRPM8, to pain signaling in visceral systems in various visceral pathological models. The roles of “TRP channels in dental pain” are reviewed by Chung and Oh. The expression of various TRP channels in pulpal afferents and odontoblasts is summarized, and their potential contribution to dental pain by thermal and mechanical stimuli is discussed. In “The role of TRP channels in migraine,” Oxford and Hurley review the potential roles of TRP channels in a trigeminovascular system, their involvement in migraine attack, and recent clinical trials. Fernandes et al. discuss “TRP receptors in arthritis, gaining knowledge for translation from experimental models”. They review current knowledge pertaining to the therapeutic potential of TRP channels, primarily TRPV1 and TRPA1, for treating pain in osteoarthritis and other arthritic conditions. The roles of “Transient Receptor Potential channels in chemotherapy-induced neuropathy” are discussed by Nassini et al. In this chapter, the current understanding of the involvement of TRPV1, TRPV4, TRPM8, and TRPA1 in chemotherapy-induced neuropathy is highlighted. The next three chapters analyze the status of therapeutic approaches targeting TRPV1 using specific agonists and antagonists. In effects of topical capsaicin on cutaneous innervation: Implications for pain management Bley reviews the potential mechanisms of topical application of high concentrations of capsaicin to skin, and suggests pharmacokinetic and pharmacodynamic considerations of this therapy. Iadarola and colleagues discuss how site-specific administration of resiniferatoxin, an ultrapotent capsaicin analog, can overcome the limitations of topical capsaicin therapy, and they give an insight into the clinical trials using resiniferatoxin for permanent pain relief in cancer patients with intractable pain. Trevisani and Gatti discuss “TRPV1 antagonists as analgesic agents.” The authors review preclinical and clinical studies addressing the application of small molecule TRPV1 antagonists as anti-hyperalgesic thera-pies, and update current status of clinical trials


2021 ◽  
Vol 22 (15) ◽  
pp. 8188
Author(s):  
Charlotte Van den Eynde ◽  
Katrien De Clercq ◽  
Joris Vriens

The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.


2011 ◽  
Vol 110 (3) ◽  
pp. 789-798 ◽  
Author(s):  
Kaori Ono ◽  
Masako Tsukamoto-Yasui ◽  
Yoshiko Hara-Kimura ◽  
Naohiko Inoue ◽  
Yoshihito Nogusa ◽  
...  

The sympathetic thermoregulatory system controls the magnitude of adaptive thermogenesis in correspondence with the environmental temperature or the state of energy intake and plays a key role in determining the resultant energy storage. However, the nature of the trigger initiating this reflex arc remains to be determined. Here, using capsiate, a digestion-vulnerable capsaicin analog, we examined the involvement of specific activation of transient receptor potential (TRP) channels within the gastrointestinal tract in the thermogenic sympathetic system by measuring the efferent activity of the postganglionic sympathetic nerve innervating brown adipose tissue (BAT) in anesthetized rats. Intragastric administration of capsiate resulted in a time- and dose-dependent increase in integrated BAT sympathetic nerve activity (SNA) over 180 min, which was characterized by an emergence of sporadic high-activity phases composed of low-frequency bursts. This increase in BAT SNA was abolished by blockade of TRP channels as well as of sympathetic ganglionic transmission and was inhibited by ablation of the gastrointestinal vagus nerve. The activation of SNA was delimited to BAT and did not occur in the heart or pancreas. These results point to a neural pathway enabling the selective activation of the central network regulating the BAT SNA in response to a specific stimulation of gastrointestinal TRP channels and offer important implications for understanding the dietary-dependent regulation of energy metabolism and control of obesity.


Sign in / Sign up

Export Citation Format

Share Document