Assembly domains in TRP channels

2007 ◽  
Vol 35 (1) ◽  
pp. 84-85 ◽  
Author(s):  
R. Schindl ◽  
C. Romanin

The large family of mammalian TRP (transient receptor potential) ion channels encompasses diverse sensory functions. TRP proteins consist of six transmembrane domains, with a pore–loop motif between the fifth and sixth domains and cytosolic N- and C-termini. The intracellular strands not only interact with various proteins and lipids, but also include essential multimerization regions. This review summarizes the current knowledge of the intrinsic assembly domains that assure tetrameric TRP channel formation.

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1401
Author(s):  
Katharina E. M. Hellenthal ◽  
Laura Brabenec ◽  
Eric R. Gross ◽  
Nana-Maria Wagner

The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.


2020 ◽  
Vol 295 (29) ◽  
pp. 9986-9997
Author(s):  
Nicholas W. Zaccor ◽  
Charlotte J. Sumner ◽  
Solomon H. Snyder

G-protein–coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways: the exchange of GDP to GTP by linked G-proteins and the recruitment of β-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of nonselective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well-explored. Here, using an array of biochemical approaches, including immunoprecipitation and fluorescence, calcium imaging, phosphate radiolabeling, and a β-arrestin–dependent luciferase assay, we characterize a GPCR–TRP channel pair, angiotensin II receptor type 1 (AT1R), and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners and that activation of AT1R by angiotensin II (ANGII) elicits β-arrestin–dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited angiotensin II–mediated G-protein–associated second messenger accumulation, AT1R receptor phosphorylation, and β-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin–dependent manner, preventing β-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.


2007 ◽  
Vol 292 (1) ◽  
pp. R64-R76 ◽  
Author(s):  
Michael J. Caterina

Living organisms must evaluate changes in environmental and internal temperatures to mount appropriate physiological and behavioral responses conducive to survival. Classical physiology has provided a wealth of information regarding the specialization of thermosensory functions among subclasses of peripheral sensory neurons and intrinsically thermosensitive neurons within the hypothalamus. However, until recently, the molecular mechanisms by which these cells carry out thermometry have remained poorly understood. The demonstration that certain ion channels of the transient receptor potential (TRP) family can be activated by increases or decreases in ambient temperature, along with the recognition of their heterogeneous expression patterns and heterogeneous temperature sensitivities, has led investigators to evaluate these proteins as candidate endogenous thermosensors. Much of this work has involved one specific channel, TRP vanilloid 1 (TRPV1), which is both a receptor for capsaicin and related pungent vanilloid compounds and a “heat receptor,” capable of directly depolarizing neurons in response to temperatures >42°C. Evidence for a contribution of TRPV1 to peripheral thermosensation has come from pharmacological, physiological, and genetic approaches. In contrast, although capsaicin-sensitive mechanisms clearly influence core body temperature regulation, the specific contribution of TRPV1 to this process remains a matter of debate. Besides TRPV1, at least six additional thermally sensitive TRP channels have been identified in mammals, and many of these also appear to participate in thermosensation. Moreover, the identification of invertebrate TRP channels, whose genetic ablation alters thermally driven behaviors, makes it clear that thermosensation represents an evolutionarily conserved role of this ion channel family.


2021 ◽  
Author(s):  
Nupur S. Munjal ◽  
Dikscha Sapra ◽  
Abhishek Goyal ◽  
K.T. Shreya Parthasarathi ◽  
Akhilesh Pandey ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the worldwide COVID-19 pandemic which began in 2019. It has a high transmission rate and pathogenicity leading to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning (ML)-based algorithms are providing higher accuracy for host-SARS-CoV-2 protein-protein interactions (PPIs). In this study, predictions of PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were performed using PPI-MetaGO algorithm. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% Matthews correlation coefficient (MCC) score and 84.09% F1 score. Thereafter, PPI networks of SARSCoV-2 proteins with HICs were generated. Furthermore, biological pathway analysis of HICs interacting with SARS-CoV-2 proteins showed the involvement of six pathways, namely inflammatory mediator regulation of transient receptor potential (TRP) channels, insulin secretion, renin secretion, gap junction, taste transduction and apelin signaling pathway. Our analysis suggests that transient receptor potential cation channel subfamily M member 4 (TRPM4), transient receptor potential cation channel subfamily A member 1 (TRPA1), gap junction protein alpha 1 (GJA1), potassium calcium-activated channel subfamily N member 4 (KCNN4), acid sensing ion channel subunit 1 (ASIC1) and inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) could serve as an initial set to the experimentalists for further validation. Additionally, various US food and drug administration (FDA) approved drugs interacting with the potential HICs were also identified. The study also reinforcesthe drug repurposing approach for the development of host directed antiviral drugs.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 478 ◽  
Author(s):  
Nicholas J. Sisco ◽  
Dustin D. Luu ◽  
Minjoo Kim ◽  
Wade D. Van Horn

Transient receptor potential (TRP) ion channels are polymodal receptors that have been implicated in a variety of pathophysiologies, including pain, obesity, and cancer. The capsaicin and heat sensor TRPV1, and the menthol and cold sensor TRPM8, have been shown to be modulated by the membrane protein PIRT (Phosphoinositide-interacting regulator of TRP). The emerging mechanism of PIRT-dependent TRPM8 regulation involves a competitive interaction between PIRT and TRPM8 for the activating phosphatidylinositol 4,5-bisphosphate (PIP2) lipid. As many PIP2 modulated ion channels also interact with calmodulin, we investigated the possible interaction between PIRT and calmodulin. Using microscale thermophoresis (MST), we show that calmodulin binds to the PIRT C-terminal α-helix, which we corroborate with a pull-down experiment, nuclear magnetic resonance-detected binding study, and Rosetta-based computational studies. Furthermore, we identify a cholesterol-recognition amino acid consensus (CRAC) domain in the outer leaflet of the first transmembrane helix of PIRT, and with MST, show that PIRT specifically binds to a number of cholesterol-derivatives. Additional studies identified that PIRT binds to cholecalciferol and oxytocin, which has mechanistic implications for the role of PIRT regulation of additional ion channels. This is the first study to show that PIRT specifically binds to a variety of ligands beyond TRP channels and PIP2.


2018 ◽  
Vol 11 (4) ◽  
pp. 100 ◽  
Author(s):  
Zili Xie ◽  
Hongzhen Hu

Although acute itch has a protective role by removing irritants to avoid further damage, chronic itch is debilitating, significantly impacting quality of life. Over the past two decades, a considerable amount of stimulating research has been carried out to delineate mechanisms of itch at the molecular, cellular, and circuit levels. There is growing evidence that transient receptor potential (TRP) channels play important roles in itch signaling. The purpose of this review is to summarize our current knowledge about the role of TRP channels in the generation of itch under both physiological and pathological conditions, thereby identifying them as potential drug targets for effective anti-itch therapies.


2011 ◽  
Vol 300 (6) ◽  
pp. R1494-R1505 ◽  
Author(s):  
Noriyuki Mori ◽  
Fuminori Kawabata ◽  
Shigenobu Matsumura ◽  
Hiroshi Hosokawa ◽  
Shigeo Kobayashi ◽  
...  

The transient receptor potential (TRP) channel family is composed of a wide variety of cation-permeable channels activated polymodally by various stimuli and is implicated in a variety of cellular functions. Recent investigations have revealed that activation of TRP channels is involved not only in nociception and thermosensation but also in thermoregulation and energy metabolism. We investigated the effect of intragastric administration of TRP channel agonists on changes in energy substrate utilization of mice. Intragastric administration of allyl isothiocyanate (AITC; a typical TRPA1 agonist) markedly increased carbohydrate oxidation but did not affect oxygen consumption. To examine whether TRP channels mediate this increase in carbohydrate oxidation, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastric administration of AITC increased carbohydrate oxidation in TRPA1 KO mice but not in TRPV1 KO mice. Furthermore, AITC dose-dependently increased intracellular calcium ion concentration in cells expressing TRPV1. These findings suggest that AITC might activate TRPV1 and that AITC increased carbohydrate oxidation via TRPV1.


2012 ◽  
Vol 20 (3) ◽  
pp. 343-355 ◽  
Author(s):  
Bernd Nilius

The ‘transient receptor potential’ (TRP) multigene family encodes sixspan membrane proteins that function as ion channels in mostly tetrameric structures. Members of this family are conserved from yeast, worm, fly to invertebrate, vertebrate and man. These channels have been stigmatized to function only as cell sensors occupied by sensory function. It turns out that TRP channels fulfil a plethora of cellular functions, including non-sensory functions in our brain. This short paper will highlight the advent of novel ion channels in the brain serving different functions and being significantly involved in the genesis of multiple diseases. We will certainly witness a plethora of the novel roles of this protein family in physiological and pathophysiological functions in our central nervous system.


2003 ◽  
Vol 371 (3) ◽  
pp. 1045-1053 ◽  
Author(s):  
Inka HEINER ◽  
Jörg EISFELD ◽  
Christian R. HALASZOVICH ◽  
Edith WEHAGE ◽  
Eberhard JÜNGLING ◽  
...  

An early key event in the activation of neutrophil granulocytes is Ca2+ influx. Members of the transient receptor potential (TRP) channel family may be held responsible for this. The aim of the present study is to analyse the expression pattern of TRP mRNA and identify characteristic currents unambiguously attributable to particular TRP channels. mRNA was extracted from human neutrophils, isolated by gradient centrifugation and also by magnetically labelled CD15 antibodies. The presence of mRNA was demonstrated using reverse transcriptase–PCR in neutrophils (controlled to be CD5-negative) as well as in human leukaemic cell line 60 (HL-60) cells, for the following TRP species: the long TRPC2 (LTRPC2), the vanilloid receptor 1, the vanilloid receptor-like protein 1 and epithelial Ca2+ channels 1 and 2. TRPC6 was specific for neutrophils, whereas only in HL-60 cells were TRPC1, TRPC2, TRPC3, melastatin 1 and melastatin-related 1 found. Patch-clamp measurements in neutrophils revealed non-selective cation currents evoked by intracellular ADP-ribose and by NAD+. Both these modes of activation have been found to be characteristic of LTRPC2. Furthermore, single-channel activity was resolved in neutrophils and it was indistinguishable from that in LTRPC2-transfected HEK-293 cells. The results provide evidence that LTRPC2 in neutrophil granulocytes forms an entry pathway for Na+ and Ca2+, which is regulated by ADP-ribose and the redox state.


2017 ◽  
Vol 312 (6) ◽  
pp. G635-G648 ◽  
Author(s):  
Dafne Balemans ◽  
Guy E. Boeckxstaens ◽  
Karel Talavera ◽  
Mira M. Wouters

Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.


Sign in / Sign up

Export Citation Format

Share Document