scholarly journals Modulation of the Endocannabinoid System Following Central Nervous System Injury

2019 ◽  
Vol 20 (2) ◽  
pp. 388 ◽  
Author(s):  
Juan Zhou ◽  
Haneen Noori ◽  
Ian Burkovskiy ◽  
J. Lafreniere ◽  
Melanie Kelly ◽  
...  

Central nervous system (CNS) injury, such as stroke or trauma, is known to increase susceptibility to various infections that adversely affect patient outcomes (CNS injury-induced immunodepression—CIDS). The endocannabinoid system (ECS) has been shown to have immunoregulatory properties. Therefore, the ECS might represent a druggable target to overcome CIDS. Evidence suggests that cannabinoid type 2 receptor (CB2R) activation can be protective during the early pro-inflammatory phase after CNS injury, as it limits neuro-inflammation and, therefore, attenuates CIDS severity. In the later phase post CNS injury, CB2R inhibition is suggested as a promising pharmacologic strategy to restore immune function in order to prevent infection.

2021 ◽  
Vol 10 (13) ◽  
pp. e356101321491
Author(s):  
Rayan Fidel Martins Monteiro ◽  
Marcos Vinícius Lebrego Nascimento ◽  
Klinsmann Thiago Lima ◽  
José Ramon Gama Almeida ◽  
Paulo Eduardo Santos Ávila ◽  
...  

In the last decades, the eCB system has been highlighted by its neuro and immunomodulatory effects. Beyond CB1R effects in Central Nervous System (CNS), CB2R target drugs has been showed to be promising to mitigation of neuroinflammatory diseases in mouse models. However, it remains unknow the effects of CB2R target drugs on behavior. Therefore, we review the effects of CB2R on behavior in murine models by Pubmed website, selecting studies between 2001 to 2021. In this sense, many studies has demonstrated the effects of overexpression, lack, activation or antagonization of CB2R on Aggressive behavior, Memory-associated behaviors, Mood disorders and Reward behavior. Similarly, it is not clear yet how the eCB system modulates the behavior through CB2Rs present in neurons. Thus, in mouse models, although the pharmacological treatment with CB2R target drugs seems to be promising for neuroinflammatory diseases, on behavior there are few answers about the pathways of this modulation, as well as, it is fundamental the development and/or the update of behavioral tests that evaluate many parameters, then expose better interpretations in these tests.


Physiology ◽  
2013 ◽  
Vol 28 (3) ◽  
pp. 151-163 ◽  
Author(s):  
Anissa Kempf ◽  
Martin E. Schwab

Nogo-A was initially discovered as a myelin-associated growth inhibitory protein limiting axonal regeneration after central nervous system (CNS) injury. This review summarizes current knowledge on how myelin and neuronal Nogo-A and its receptors exert physiological functions ranging from the regulation of growth suppression to synaptic plasticity in the developing and adult intact CNS.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Christian Macks ◽  
Jeoung Soo Lee

AbstractNeuronal axons damaged by traumatic injury are unable to spontaneously regenerate in the mammalian adult central nervous system (CNS), causing permanent motor, sensory, and cognitive deficits. Regenerative failure in the adult CNS results from a complex pathology presenting multiple barriers, both the presence of growth inhibitors in the extrinsic microenvironment and intrinsic deficiencies in neuronal biochemistry, to axonal regeneration and functional recovery. There are many strategies for axonal regeneration after CNS injury including antagonism of growth-inhibitory molecules and their receptors, manipulation of cyclic nucleotide levels, and delivery of growth-promoting stimuli through cell transplantation and neurotrophic factor delivery. While all of these approaches have achieved varying degrees of improvement in plasticity, regeneration, and function, there is no clinically effective therapy for CNS injury. RNA interference technology offers strategies for improving regeneration by overcoming the aspects of the injured CNS environment that inhibit neurite growth. This occurs through the knockdown of growth-inhibitory molecules and their receptors. In this review, we discuss the current state of RNAi strategies for the treatment of CNS injury based on non-viral vector mediated delivery.


2020 ◽  
Vol 21 (7) ◽  
pp. 2273
Author(s):  
Eunyoung Jung ◽  
Seong-Ho Koh ◽  
Myeongjong Yoo ◽  
Yoon Kyung Choi

Regeneration of adult neural circuits after an injury is limited in the central nervous system (CNS). Heme oxygenase (HO) is an enzyme that produces HO metabolites, such as carbon monoxide (CO), biliverdin and iron by heme degradation. CO may act as a biological signal transduction effector in CNS regeneration by stimulating neuronal intrinsic and extrinsic mechanisms as well as mitochondrial biogenesis. CO may give directions by which the injured neurovascular system switches into regeneration mode by stimulating endogenous neural stem cells and endothelial cells to produce neurons and vessels capable of replacing injured neurons and vessels in the CNS. The present review discusses the regenerative potential of CO in acute and chronic neuroinflammatory diseases of the CNS, such as stroke, traumatic brain injury, multiple sclerosis and Alzheimer’s disease and the role of signaling pathways and neurotrophic factors. CO-mediated facilitation of cellular communications may boost regeneration, consequently forming functional adult neural circuits in CNS injury.


2014 ◽  
Vol 11 (1) ◽  
pp. 29 ◽  
Author(s):  
Martin S Weber ◽  
Thomas Prod’homme ◽  
Sawsan Youssef ◽  
Shannon E Dunn ◽  
Lawrence Steinman ◽  
...  

2013 ◽  
Vol 202 (5) ◽  
pp. 381-382 ◽  
Author(s):  
Celia J. A. Morgan ◽  
Emma Page ◽  
Carola Schaefer ◽  
Katharine Chatten ◽  
Amod Manocha ◽  
...  

SummaryAnandamide is a ligand of the endocannabinoid system. Animals show a depletion following repeated Δ9-tetrahydrocannabinol (THC) administration but the effect of cannabis use on central nervous system levels of endocannabinoids has not been previously examined in humans. Cerebrospinal fluid (CSF) levels of the endocannabinoids anandamide, 2-arachidonoylglycerol (2-AG) and related lipids were tested in 33 volunteers (20 cannabis users). Lower levels of CSF anandamide and higher levels of 2-AG in serum were observed in frequent compared with infrequent cannabis users. Levels of CSF anandamide were negatively correlated with persisting psychotic symptoms when drug-free. Higher levels of anandamide are associated with a lower risk of psychotic symptoms following cannabis use.


Sign in / Sign up

Export Citation Format

Share Document