scholarly journals Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming

2019 ◽  
Vol 20 (8) ◽  
pp. 1922 ◽  
Author(s):  
Ahmed Abdal Dayem ◽  
Soo Bin Lee ◽  
Kyeongseok Kim ◽  
Kyung Min Lim ◽  
Tak-il Jeon ◽  
...  

Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs.

Author(s):  
Hao Xu ◽  
Liying Wu ◽  
Guojia Yuan ◽  
Xiaolu Liang ◽  
Xiaoguang Liu ◽  
...  

: Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Sushrut Dakhore ◽  
Bhavana Nayer ◽  
Kouichi Hasegawa

Over the past two decades, human embryonic stem cells (hESCs) have gained attention due to their pluripotent and proliferative ability which enables production of almost all cell types in the human body in vitro and makes them an excellent tool to study human embryogenesis and disease, as well as for drug discovery and cell transplantation therapies. Discovery of human-induced pluripotent stem cells (hiPSCs) further expanded therapeutic applications of human pluripotent stem cells (PSCs). hPSCs provide a stable and unlimited original cell source for producing suitable cells and tissues for downstream applications. Therefore, engineering the environment in which these cells are grown, for stable and quality-controlled hPSC maintenance and production, is one of the key factors governing the success of these applications. hPSCs are maintained in a particular niche using specific cell culture components. Ideally, the culture should be free of xenobiotic components to render hPSCs suitable for therapeutic applications. Substantial efforts have been put to identify effective components, and develop culture conditions and protocols, for their large-scale expansion without compromising on quality. In this review, we discuss different media, their components and functions, including specific requirements to maintain the pluripotent and proliferative ability of hPSCs. Understanding the role of culture components would enable the development of appropriate conditions to promote large-scale, quality-controlled expansion of hPSCs thereby increasing their potential applications.


2011 ◽  
Vol 17 (4) ◽  
pp. 474-497 ◽  
Author(s):  
Monika Nowak-Imialek ◽  
Wilfried Kues ◽  
Joseph W. Carnwath ◽  
Heiner Niemann

AbstractPluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.


Author(s):  
Eszter Posfai ◽  
John Paul Schell ◽  
Adrian Janiszewski ◽  
Isidora Rovic ◽  
Alexander Murray ◽  
...  

AbstractTotipotency is the ability of a single cell to give rise to all the differentiated cells that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies upon a variety of assays of variable stringency. Here we describe criteria to define totipotency. We illustrate how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in the mouse, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbor increased totipotent potential relative to conventional embryonic stem cells under in vivo conditions.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Narasimman Gurusamy ◽  
SHEEJA RAJASINGH ◽  
Vijay Selvam ◽  
Vinoth Sigamani ◽  
Jayavardini Vasanthan ◽  
...  

Introduction: Mesenchymal stem cells (MSCs) are multipotent adult stem cells having an extensive proliferation capacity in vitro and in vivo. These MSCs can differentiate into various mesoderm-type cells such as osteoblasts, cardiomyocytes, etc. A subpopulation of urinary epithelial cells (UECs) have been identified in urine samples, is considered a promising cell resource for generating autologous induced-pluripotent stem cells (iPSCs). Hypothesis: We hypothesize that the production of high quality, autologous, induced-MSCs (iMSCs) with high replicative potential suitable for the regenerative therapy, using an easy, and the most non-invasive method of isolation, from human UECs. Methods and Results: Human urine was collected and centrifuged to obtain the UECs, which were characterized by the expression of CK19 and ZO1. These UECs were reprogrammed to iPSCs using a cocktail of mRNAs (OCT4, KLF4, SOX2, c-MYC, Nanog and Lin28) along with Lipofectamine for 11 days in culture. These iPSCs were characterized by the expression of the pluripotent markers such as OCT4, SOX2 and SSEA4. The iPSCs were subsequently differentiated into iMSCs using the mesenchymal specific medium for 21 days. iMSCs were harvested at the end of 21 days, and they were characterized by the high levels of mRNA and protein expressions of mesenchymal specific markers such as CD73, CD90 and CD105 (Fig. 1A). FACS analysis showed that more than 93% of the cells were positive for the markers of MSCs (Fig. 1B) . Moreover, the obtained iMSCs have high proliferation capacity compared with the adult stem cells. Conclusions: We have developed an easy, non-invasive method for obtaining autologous, non-immunogenic and highly-proliferating iMSCs suitable for various regenerative therapies including cardiac diseases, from urinary epithelial cells.


2011 ◽  
Vol 12 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Zhou Tan ◽  
Zhong-yuan Su ◽  
Rong-rong Wu ◽  
Bin Gu ◽  
Yu-kan Liu ◽  
...  

2022 ◽  
Author(s):  
Hajime Ozaki ◽  
Hidetaka Suga ◽  
Mayu Sakakibara ◽  
Mika Soen ◽  
Natsuki Miyake ◽  
...  

Abstract Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs) differentiate into AVP neurons, whereas human ESCs/induced pluripotent stem cells (iPSCs) die. Human ES/iPSCs are generally more similar to mouse epiblast stem cells compared to mouse ESCs, which are termed as primed and naive, respectively. In this study, we converted human FNDI-specific iPSCs from primed to naive cells, and found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 721 ◽  
Author(s):  
Aeyung Kim ◽  
Seo-Young Lee ◽  
Chang-Seob Seo ◽  
Sun-Ku Chung

Induced pluripotent stem cells (iPSCs) have similar properties to embryonic stem cells in terms of indefinite self-renewal and differentiation capacity. After in vitro differentiation of iPSCs, undifferentiated iPSCs (USCs) may exist in cell therapy material and can form teratomas after in vivo transplantation. Selective elimination of residual USCs is, therefore, very important. Prunellae Spica (PS) is a traditional medicinal plant that has been shown to exert anti-cancer, antioxidant, and anti-inflammatory activities; however, its effects on iPSCs have not been previously characterized. In this study, we find that ethanol extract of PS (EPS) effectively induces apoptotic cell death of USCs through G2/M cell cycle arrest, generation of intracellular reactive oxygen species, alteration of mitochondrial membrane potentials, and caspase activation of USCs. In addition, EPS increases p53 accumulation and expression of its downstream targets. In p53 knockout (KO) iPSCs, the EPS did not induce apoptosis, indicating that EPS-mediated apoptosis of USCs was p53-dependent. In addition, EPS was not genotoxic towards iPSCs-derived differentiated cells. EPS treatment before injection efficiently prevented in ovo teratoma formation of p53 wild-type (WT) iPSCs but not p53KO iPSCs. Collectively, these results indicate that EPS has potent anti-teratoma activity and no genotoxicity to differentiated cells. It can, therefore, be used in the development of safe and efficient iPSC-based cell therapies.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Letizia De Chiara ◽  
Elvira Smeralda Famulari ◽  
Sharmila Fagoonee ◽  
Saskia K. M. van Daalen ◽  
Stefano Buttiglieri ◽  
...  

Mesenchymal stem cells hold great promise for regenerative medicine as they can be easily isolated from different sources such as adipose tissue, bone marrow, and umbilical cord blood. Spontaneously arising pluripotent stem cells can be obtained in culture from murine spermatogonial stem cells (SSCs), while the pluripotency of the human counterpart remains a matter of debate. Recent gene expression profiling studies have demonstrated that embryonic stem cell- (ESC-) like cells obtained from the human testis are indeed closer to mesenchymal stem cells (MSCs) than to pluripotent stem cells. Here, we confirm that colonies derived from human testicular cultures, with our isolation protocol, are of mesenchymal origin and do not arise from spermatogonial stem cells (SSCs). The testis, thus, provides an important and accessible source of MSCs (tMSCs) that can be potentially used for nephrotoxicity testing in vitro. We further demonstrate, for the first time, that tMSCs are able to secrete microvesicles that could possibly be applied to the treatment of various chronic diseases, such as those affecting the kidney.


Sign in / Sign up

Export Citation Format

Share Document