scholarly journals Association Analysis of Salt Tolerance in Asiatic cotton (Gossypium arboretum) with SNP Markers

2019 ◽  
Vol 20 (9) ◽  
pp. 2168 ◽  
Author(s):  
Tussipkan Dilnur ◽  
Zhen Peng ◽  
Zhaoe Pan ◽  
Koffi Palanga ◽  
Yinhua Jia ◽  
...  

Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of −log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.

2021 ◽  
Author(s):  
Dev Paudel ◽  
Rocheteau Dareus ◽  
Julia Rosenwald ◽  
Maria Munoz-Amatriain ◽  
Esteban Rios

Cowpea (Vigna unguiculata [L.] Walp., diploid, 2n = 22) is a major crop used as a protein source for human consumption as well as a quality feed for livestock. It is drought and heat tolerant and has been bred to develop varieties that are resilient to changing climates. Plant adaptation to new climates and their yield are strongly affected by flowering time. Therefore, understanding the genetic basis of flowering time is critical to advance cowpea breeding. The aim of this study was to perform genome-wide association studies (GWAS) to identify marker trait associations for flowering time in cowpea using single nucleotide polymorphism (SNP) markers. A total of 367 accessions from a cowpea mini-core collection were evaluated in Ft. Collins, CO in 2019 and 2020, and 292 accessions were evaluated in Citra, FL in 2018. These accessions were genotyped using the Cowpea iSelect Consortium Array that contained 51,128 SNPs. GWAS revealed seven reliable SNPs for flowering time that explained 8-12% of the phenotypic variance. Candidate genes including FT, GI, CRY2, LSH3, UGT87A2, LIF2, and HTA9 that are associated with flowering time were identified for the significant SNP markers. Further efforts to validate these loci will help to understand their role in flowering time in cowpea, and it could facilitate the transfer of some of this knowledge to other closely related legume species.


2021 ◽  
Author(s):  
Siffat Ullah Khan ◽  
Yanxiao Zheng ◽  
Zaid Chachar ◽  
Xuhuan Zhang ◽  
Guyi Zhou ◽  
...  

Abstract Drought is one of the most critical environmental factors constraining corn production especially when it occurs during flowering, resulting in serious yield losses. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were evaluated under water-stress (WS) and well-water (WW) field conditions for three consecutive years. Averagely, ASI was extended by 25.96%, ear biomass was decreased by 17.54%, and the PH was reduced by 12.47% under drought stress conditions. Genome wide association studies (GWAS) were carried out using phenotypic values under WS, WW and drought-tolerance index (WS-WW or WS/WW) applying mixed linear model controlling both population structure and relative kinship. Totally, 71, 159, and 21 SNPs were significantly (P < 10-5) associated with ASI, ear biomass, and PH, respectively. Candidate genes encoding ARABIDILLO 1 protein, glycoprotein, Tic22-like and Zinc finger family protein for ASI, and 26S proteasome non-ATPase regulatory subunit-9 for EBM, were identified under both WW and WS conditions. Pyridoxal phosphate transferase was associated with EBM under drought stress treatment in consecutive two years. Furthermore, most candidate genes were evidenced to be drought responsive in the association panel. Meanwhile, the favourable/drought tolerance haplotypes were identified based on haplotype analysis. These findings provide insights into the genetic basis of drought tolerance at the flowering stage especially for the female inflorescence development and will facilitate high drought tolerant maize breeding.


2020 ◽  
Author(s):  
Bingxing An ◽  
Lei Xu ◽  
Jiangwei Xia ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Abstract Background: Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. Results: In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. Conclusions: Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.


2020 ◽  
Author(s):  
Bingxing An ◽  
Lei Xu ◽  
Jiangwei Xia ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Abstract Background: Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. Results: In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. Conclusions: Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.


2016 ◽  
Vol 15 (6) ◽  
pp. 488-495 ◽  
Author(s):  
Zeeshan Khan ◽  
Javaria Qazi ◽  
Awais Rasheed ◽  
Abdul Mujeeb-Kazi

AbstractSeedling emergence is the preliminary factor defining wheat adaptability and stability under salt stress. This study was led to assess the salinity tolerance amongst 226 synthetic hexaploid wheats (SHWs) evaluated against two check cultivars, the tolerant ‘S-24’ and the susceptible ‘PBW-343’ at three sodium chloride treatments (0, 100 and 200 mM). Highly significant and positive correlation was observed between germination % and germination index (r = 0.85), and between seedling height and weight (r = 0.85). All four traits across three treatments were transformed into the salt tolerance trait index and salt tolerance index (STI). STI had significant positive correlation with all four parameters indicating reliability of this index for ranking the tolerance levels. STI-based 20 best performing genotypes were known as being promising candidates for wheat breeding. Local tolerant check was amongst the top three tolerant accessions. Two SHWs, AUS30288 {Croc_1/Aegilops squarrosa (466)} and AUS34444 {Ceta/Ae. squarrosa (872)} outperformed S-24 with STI of 61.8 and 55.7, respectively. SHW with same durum parents were included in tolerant and susceptible categories indicating that tolerance is contributed by the Ae. squarrosa syn. tauschii parent of SHWs. In conclusion, this baseline study revealed that continuous variation in the seedling emergence traits under salt stress is a conduit towards implementing genome-wide association studies. Likewise, new diversity has implications in development of salt tolerance germplasm after genetic dissection permitting unique Ae. squarrosa accessional diversity validation to target SHW donors for breeding.


2021 ◽  
Author(s):  
Zeliang Zhang ◽  
Juyun Zheng ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Zhiwei Sang ◽  
...  

Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Its salt tolerance varies greatly depending on the variety, growth stage, organs, and soil salt types. Therefore, the selection and utilization of excellent salt-tolerant germplasm resources and the excavation of excellent salt-tolerant salt and salt resistance genes play important roles in improving cotton production in saline-alkali soils. In this study, we analysed the population structure and genetic diversity of 144 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China. Illumina Cotton SNP 70K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 experimental materials, and 18,432 highly consistent SNP loci were obtained by filtering. PCA (principal component analysis)indicated that 149 upland cotton materials could be divided into 2 subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d_Germination_potential, 3d_Bud_length_drop_rate, 7d_Germination_rate, 7d_Bud_length_drop_rate, 7d_Germination_weight, 3d_Bud_length, 7d_Bud_length, relative_germination_potential, Relative_germination_rate, 7d_Bud_weight_drop_rate, Salt tolerance index 3d_Germination_potential_index, 3d_Bud_length_index, 7d_Bud_length_index, 7d_Bud_weight_index, and 7d_Germination_rate_index were evaluated by genome association analysis. A total of 27 SNP markers closely related to salt tolerance traits and 15 SNP markers closely related to salt tolerance index were detected. At the SNP locus associated with the traits of the bud length decline rate at 7 days, alleles Gh_A01G0034 and Gh_D01G0028 related to plant salt tolerance were detected, and they are related to intracellular transport, membrane microtubule formation and actin network. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.


2020 ◽  
Author(s):  
Bingxing An ◽  
Lei Xu ◽  
Jiangwei Xia ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Abstract Background: Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. Results: In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. Conclusions: Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.


2020 ◽  
Author(s):  
Bingxing An ◽  
Lei Xu ◽  
Jiangwei Xia ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Abstract Background: Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. Results: In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. Conclusions: Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.


2019 ◽  
Author(s):  
Bingxing An ◽  
Lei Xu ◽  
Jiangwei Xia ◽  
Tianpeng Chang ◽  
Xiaoqiao Wang ◽  
...  

Abstract Background: Body size traits as one of the main breeding selection criteria have long since being widely used to monitor cattle growth and evaluate the selection response. Here the volume of body size is indicated by body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS) and cannon bone size (CS). We performed genome-wide association studies (GWAS) for these traits to a broad spectrum of three growth stages (months 6, 12 and 18 after birth) under three statistical models: single-trait GWAS, multi-trait GWAS and LONG-GWAS. The whole genomic single nucleotide polymorphisms (SNPs) were obtained from the Illumina Bovine HD 770K BeadChip genotype on 1217 individuals. Results: In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. While 21 genes among in these loci appeared to be promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2 and PRIM2 detected by single-trait analyze; SLC37A1, LAP3, PCDH7, MANEA and LHCGR detected by multi-trait analyze; P2RY1, MPZL1, LINGO2, CMIP and WSCD1 detected by LONG-GWAS. Conclusions: Multiple association analysis strategies were performed for six growth traits on each stage. This research could offer valuable insights to further explore the potential mechanism of growth traits in Simmental beef cattle.


2016 ◽  
Author(s):  
Dong Zhang ◽  
Nicholi J. Pitra ◽  
Mark C. Coles ◽  
Edward S. Buckler ◽  
Paul D. Matthews

AbstractGenome-wide meiotic recombination structures, sex chromosomes, and candidate genes for sex determination were discovered among Humulus spp. by application of a novel, high-density molecular marker system: ~1.2M single nucleotide polymorphisms (SNPs) were profiled with genotyping-by-sequencing (GBS) among 4512 worldwide accessions, including 4396 cultivars and landraces and 116 wild accessions of hops. Pre-qualified GBS markers were validated by inferences on families, population structures and phylogeny. Candidate genes discovered for several traits, including sex and drought stress-resistance, demonstrate the quality and utility of GBS SNPs for genome-wide association studies (GWAS) and Fst analysis in hops. Most importantly, pseudo-testcross mappings in F1 families delineated non-random linkage of Mendelian and non-Mendelian markers: structures that are indicative of unusual meiotic events which may have driven the evolution and cultivation of hops.


Sign in / Sign up

Export Citation Format

Share Document