scholarly journals Deletion of the Nucleotide Exchange Factor Vav3 Enhances Axonal Complexity and Synapse Formation but Tampers Activity of Hippocampal Neuronal Networks In Vitro

2020 ◽  
Vol 21 (3) ◽  
pp. 856
Author(s):  
David Wegrzyn ◽  
Christine Wegrzyn ◽  
Kerry Tedford ◽  
Klaus-Dieter Fischer ◽  
Andreas Faissner

Vav proteins activate GTPases of the RhoA subfamily that regulate the cytoskeleton and are involved in adhesion, migration, differentiation, polarity and the cell cycle. While the importance of RhoA GTPases for neuronal morphology is undisputed, their regulation is less well understood. In this perspective, we studied the consequences of the deletion of Vav2, Vav3 and Vav2 and 3 (Vav2−/−, Vav3−/−, Vav2−/−/3−/−) for the development of embryonic hippocampal neurons in vitro. Using an indirect co-culture system of hippocampal neurons with primary wild-type (WT) cortical astrocytes, we analysed axonal and dendritic parameters, structural synapse numbers and the spontaneous network activity via immunocytochemistry and multielectrode array analysis (MEA). Here, we observed a higher process complexity in Vav3−/−, but not in Vav2−/− neurons after three and five days in vitro (DIV). Furthermore, an enhanced synapse formation was observed in Vav3−/− after 14 days in culture. Remarkably, Vav2−/−/3−/− double knockout neurons did not display synergistic effects. Interestingly, these differences were transient and compensated after a cultivation period of 21 days. Network analysis revealed a diminished number of spontaneously occurring action potentials in Vav3−/− neurons after 21 DIV. Based on these results, it appears that Vav3 participates in key events of neuronal differentiation.

2011 ◽  
Vol 193 (6) ◽  
pp. 1009-1020 ◽  
Author(s):  
Martijn Gloerich ◽  
Marjolein J. Vliem ◽  
Esther Prummel ◽  
Lars A.T. Meijer ◽  
Marije G.A. Rensen ◽  
...  

Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.


1997 ◽  
Vol 139 (3) ◽  
pp. 797-807 ◽  
Author(s):  
Frank N. van Leeuwen ◽  
Hendrie E.T. Kain ◽  
Rob A. van der Kammen ◽  
Frits Michiels ◽  
Onno W. Kranenburg ◽  
...  

The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects neurite outgrowth in N1E-115 neuroblastoma cells. These effects are Rac-dependent and strongly promoted by laminin. Overexpression of Tiam1 recruits the α6β1 integrin, a laminin receptor, to specific adhesive contacts at the cell periphery, which are different from focal contacts. Cells overexpressing Tiam1 no longer respond to lysophosphatidic acid– induced neurite retraction and cell rounding, processes mediated by Rho, suggesting that Tiam1-induced activation of Rac antagonizes Rho signaling. This inhibition can be overcome by coexpression of constitutively active RhoA, which may indicate that regulation occurs at the level of Rho or upstream. Conversely, neurite formation induced by Tiam1 or Rac1 is further promoted by inactivating Rho. These results demonstrate that Rac- and Rho-mediated pathways oppose each other during neurite formation and that a balance between these pathways determines neuronal morphology. Furthermore, our data underscore the potential role of Tiam1 as a specific regulator of Rac during neurite formation and illustrate the importance of reciprocal interactions between the cytoskeleton and the extracellular matrix during this process.


2004 ◽  
Vol 15 (11) ◽  
pp. 4990-5000 ◽  
Author(s):  
Adriana Pagano ◽  
Pascal Crottet ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and γ-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.


2007 ◽  
Vol 18 (11) ◽  
pp. 4327-4342 ◽  
Author(s):  
Frédéric Causeret ◽  
Tom Jacobs ◽  
Mami Terao ◽  
Owen Heath ◽  
Mikio Hoshino ◽  
...  

The correct morphology and migration of neurons, which is essential for the normal development of the nervous system, is enabled by the regulation of their cytoskeletal elements. We reveal that Neurabin-I, a neuronal-specific F-actin–binding protein, has an essential function in the developing forebrain. We show that gain and loss of Neurabin-I expression affect neuronal morphology, neurite outgrowth, and radial migration of differentiating cortical and hippocampal neurons, suggesting that tight regulation of Neurabin-I function is required for normal forebrain development. Importantly, loss of Neurabin-I prevents pyramidal neurons from migrating into the cerebral cortex, indicating its essential role during early stages of corticogenesis. We demonstrate that in neurons Rac1 activation is affected by the expression levels of Neurabin-I. Furthermore, the Cdk5 kinase, a key regulator of neuronal migration and morphology, directly phosphorylates Neurabin-I and controls its association with F-actin. Mutation of the Cdk5 phosphorylation site reduces the phenotypic consequences of Neurabin-I overexpression both in vitro and in vivo, suggesting that Neurabin-I function depends, at least in part, on its phosphorylation status. Together our findings provide new insight into the signaling pathways responsible for controlled changes of the F-actin cytoskeleton that are required for normal development of the forebrain.


2009 ◽  
Vol 187 (4) ◽  
pp. 497-511 ◽  
Author(s):  
Marco Geymonat ◽  
Adonis Spanos ◽  
Geoffroy de Bettignies ◽  
Steven G. Sedgwick

Lte1 is a mitotic regulator long envisaged as a guanosine nucleotide exchange factor (GEF) for Tem1, the small guanosine triphosphatase governing activity of the Saccharomyces cerevisiae mitotic exit network. We demonstrate that this model requires reevaluation. No GEF activity was detectable in vitro, and mutational analysis of Lte1’s putative GEF domain indicated that Lte1 activity relies on interaction with Ras for localization at the bud cortex rather than providing nucleotide exchange. Instead, we found that Lte1 can determine the subcellular localization of Bfa1 at spindle pole bodies (SPBs). Under conditions in which Lte1 is essential, Lte1 promoted the loss of Bfa1 from the maternal SPB. Moreover, in cells with a misaligned spindle, mislocalization of Lte1 in the mother cell promoted loss of Bfa1 from one SPB and allowed bypass of the spindle position checkpoint. We observed that lte1 mutants display aberrant localization of the polarity cap, which is the organizer of the actin cytoskeleton. We propose that Lte1’s role in cell polarization underlies its contribution to mitotic regulation.


2003 ◽  
Vol 14 (1) ◽  
pp. 313-323 ◽  
Author(s):  
Pedro M. Coll ◽  
Yadira Trillo ◽  
Amagoia Ametzazurra ◽  
Pilar Perez

Schizosaccharomyces pombe cdc42+regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1+increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression ofgef1+causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1+deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1Δ scd1Δ is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1+orscd1+causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.


2008 ◽  
Vol 28 (23) ◽  
pp. 7012-7029 ◽  
Author(s):  
Christopher W. Tsang ◽  
Michael Fedchyshyn ◽  
John Harrison ◽  
Hong Xie ◽  
Jing Xue ◽  
...  

ABSTRACT The septin family of GTPases, first identified for their roles in cell division, are also expressed in postmitotic tissues. SEPT3 (G-septin) and SEPT5 (CDCrel-1) are highly expressed in neurons, enriched in presynaptic terminals, and associated with synaptic vesicles. These characteristics suggest that SEPT3 or SEPT5 might be important for synapse formation, maturation, or synaptic vesicle traffic. Since Sept5 −/− mice do not show any overt neurological phenotypes, we generated Sept3 −/− and Sept3 −/− Sept5 −/− mice and found that SEPT3 and SEPT5 are not essential for development, fertility, or viability. Changes in the expression of septins were noted in the absence of SEPT3, SEPT5, and both septins. SEPT5 association with other septins in brain tissue was unaffected by the removal of SEPT3. No abnormalities were observed in the gross morphology and synapses of the hippocampus. Similarly, axon development and synapse formation were unaffected in vitro. In cultured hippocampal neurons, the size of the recycling synaptic vesicle pool was unaltered in the absence of SEPT3. Furthermore, synaptic transmission at two different central synapses was not significantly affected in Sept3 −/− Sept5 −/− mice. These results indicate that SEPT3 and SEPT5 are dispensable for neuronal development as well as for synaptic vesicle fusion and recycling.


2003 ◽  
Vol 160 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Metello Innocenti ◽  
Emanuela Frittoli ◽  
Isabella Ponzanelli ◽  
John R. Falck ◽  
Saskia M. Brachmann ◽  
...  

Class I phosphoinositide 3-kinases (PI3Ks) are implicated in many cellular responses controlled by receptor tyrosine kinases (RTKs), including actin cytoskeletal remodeling. Within this pathway, Rac is a key downstream target/effector of PI3K. However, how the signal is routed from PI3K to Rac is unclear. One possible candidate for this function is the Rac-activating complex Eps8–Abi1–Sos-1, which possesses Rac-specific guanine nucleotide exchange factor (GEF) activity. Here, we show that Abi1 (also known as E3b1) recruits PI3K, via p85, into a multimolecular signaling complex that includes Eps8 and Sos-1. The recruitment of p85 to the Eps8–Abi1–Sos-1 complex and phosphatidylinositol 3, 4, 5 phosphate (PIP3), the catalytic product of PI3K, concur to unmask its Rac-GEF activity in vitro. Moreover, they are indispensable for the activation of Rac and Rac-dependent actin remodeling in vivo. On growth factor stimulation, endogenous p85 and Abi1 consistently colocalize into membrane ruffles, and cells lacking p85 fail to support Abi1-dependent Rac activation. Our results define a mechanism whereby propagation of signals, originating from RTKs or Ras and leading to actin reorganization, is controlled by direct physical interaction between PI3K and a Rac-specific GEF complex.


Sign in / Sign up

Export Citation Format

Share Document