scholarly journals The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity

2011 ◽  
Vol 193 (6) ◽  
pp. 1009-1020 ◽  
Author(s):  
Martijn Gloerich ◽  
Marjolein J. Vliem ◽  
Esther Prummel ◽  
Lars A.T. Meijer ◽  
Marije G.A. Rensen ◽  
...  

Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.

Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1433
Author(s):  
Mohamed Elnagdy ◽  
Shirish Barve ◽  
Craig McClain ◽  
Leila Gobejishvili

The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.


2021 ◽  
Author(s):  
Guillaume Holzer ◽  
Paola De Magistris ◽  
Cathrin Gramminger ◽  
Ruchika Sachdev ◽  
Adriana Magalska ◽  
...  

During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. We show here that Nup50 plays a crucial role in NPC assembly that is independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of the protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α, β, the GTPase Ran or chromatin is crucial for its function in the assembly process. Instead, we discovered that an N-terminal fragment of Nup50 can stimulate the Ran guanine exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in mitotic NPC reformation. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild type protein in in vitro NPC assembly assays.


2018 ◽  
Vol 217 (9) ◽  
pp. 3161-3182 ◽  
Author(s):  
Martina Zobel ◽  
Andrea Disanza ◽  
Francesca Senic-Matuglia ◽  
Michel Franco ◽  
Ivan Nicola Colaluca ◽  
...  

The endocytic protein NUMB has been implicated in the control of various polarized cellular processes, including the acquisition of mesenchymal migratory traits through molecular mechanisms that have only been partially defined. Here, we report that NUMB is a negative regulator of a specialized set of understudied, apically restricted, actin-based protrusions, the circular dorsal ruffles (CDRs), induced by either PDGF or HGF stimulation. Through its PTB domain, NUMB binds directly to an N-terminal NPLF motif of the ARF6 guanine nucleotide exchange factor, EFA6B, and promotes its exchange activity in vitro. In cells, a NUMB–EFA6B–ARF6 axis regulates the recycling of the actin regulatory cargo RAC1 and is critical for the formation of CDRs that mark the acquisition of a mesenchymal mode of motility. Consistently, loss of NUMB promotes HGF-induced cell migration and invasion. Thus, NUMB negatively controls membrane protrusions and the acquisition of mesenchymal migratory traits by modulating EFA6B–ARF6 activity.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 69 ◽  
Author(s):  
Marion Delaunay ◽  
Halima Osman ◽  
Simon Kaiser ◽  
Dario Diviani

Myocardial stress and injury invariably promote remodeling of the cardiac tissue, which is associated with cardiomyocyte death and development of fibrosis. The fibrotic process is initially triggered by the differentiation of resident cardiac fibroblasts into myofibroblasts. These activated fibroblasts display increased proliferative capacity and secrete large amounts of extracellular matrix. Uncontrolled myofibroblast activation can thus promote heart stiffness, cardiac dysfunction, arrhythmias, and progression to heart failure. Despite the well-established role of myofibroblasts in mediating cardiac disease, our current knowledge on how signaling pathways promoting fibrosis are regulated and coordinated in this cell type is largely incomplete. In this respect, cyclic adenosine monophosphate (cAMP) signaling acts as a major modulator of fibrotic responses activated in fibroblasts of injured or stressed hearts. In particular, accumulating evidence now suggests that upstream cAMP modulators including G protein-coupled receptors, adenylyl cyclases (ACs), and phosphodiesterases (PDEs); downstream cAMP effectors such as protein kinase A (PKA) and the guanine nucleotide exchange factor Epac; and cAMP signaling organizers such as A-kinase anchoring proteins (AKAPs) modulate a variety of fundamental cellular processes involved in myocardial fibrosis including myofibroblast differentiation, proliferation, collagen secretion, and invasiveness. The current review will discuss recent advances highlighting the role of cAMP and AKAP-mediated signaling in regulating pathophysiological responses controlling cardiac fibrosis.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Janet M Murray ◽  
Douglas I Johnson

Abstract The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24ts mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1+, encoded an ~15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Δnrf1 mutant was viable but overexpression of nrf1+ in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1+ also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 334
Author(s):  
Aisha Y. Madani ◽  
Yasser Majeed ◽  
Houari B. Abdesselem ◽  
Maha V. Agha ◽  
Muneera Vakayil ◽  
...  

Obesity promotes premature aging and dysfunction of white adipose tissue (WAT) through the accumulation of cellular senescence. The senescent cells burden in WAT has been linked to inflammation, insulin-resistance (IR), and type 2 diabetes (T2D). There is limited knowledge about molecular mechanisms that sustain inflammation in obese states. Here, we describe a robust and physiologically relevant in vitro system to trigger senescence in mouse 3T3-L1 preadipocytes. By employing transcriptomics analyses, we discovered up-regulation of key pro-inflammatory molecules and activation of interferon/signal transducer and activator of transcription (STAT)1/3 signaling in senescent preadipocytes, and expression of downstream targets was induced in epididymal WAT of obese mice, and obese human adipose tissue. To test the relevance of STAT1/3 signaling to preadipocyte senescence, we used Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology to delete STAT1/3 and discovered that STAT1 promoted growth arrest and cooperated with cyclic Guanosine Monophosphate-Adenosine Monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) to drive the expression of interferon β (IFNβ), C-X-C motif chemokine ligand 10 (CXCL10), and interferon signaling-related genes. In contrast, we discovered that STAT3 was a negative regulator of STAT1/cGAS-STING signaling—it suppressed senescence and inflammation. These data provide insights into how STAT1/STAT3 signaling coordinates senescence and inflammation through functional interactions with the cGAS/STING pathway.


1998 ◽  
Vol 89 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Richard C. Prielipp ◽  
Drew A. MacGregor ◽  
Roger L. Royster ◽  
Neal D. Kon ◽  
Michael H. Hines ◽  
...  

Background Patients may receive more than one positive inotropic drug to improve myocardial function and cardiac output, with the assumption that the effects of two drugs are additive. The authors hypothesized that combinations of dobutamine and epinephrine would produce additive biochemical and hemodynamic effects. Methods The study was performed in two parts. Phase 1 used human lymphocytes in an in vitro model of cyclic adenosine monophosphate (cAMP) generation in response to dobutamine (10(-8) to 10(-4) M) or epinephrine (10(-9) M to 10(-5) M), and dobutamine and epinephrine together. Phase 2 was a clinical study in patients after aortocoronary artery bypass in which isobolographic analysis compared the cardiotonic effects of dobutamine (1.25, 2.5, or 5 microg x kg(-1) x min(-1)) or epinephrine (10, 20, or 40 ng x kg(-l) x min(-1)), alone or in combination. Results In phase 1, dobutamine increased cAMP production 41%, whereas epinephrine increased cAMP concentration approximately 200%. However, when epinephrine (10(-6) M) and dobutamine were combined, dobutamine reduced cAMP production at concentrations between 10(-6) to 10(-4) M (P = 0.001). In patients, 1.25 to 5 microg x kg(-1) x min(-1) dobutamine increased the cardiac index (CI) 15-28%. Epinephrine also increased the CI with each increase in dose. However, combining epinephrine with the two larger doses of dobutamine (2.5 and 5microg x kg(-1) x mi(-1)) did not increase the CI beyond that achieved with epinephrine and the lowest dose of dobutamine (1.25 microg x kg(-1) x min(-1)). In addition, the isobolographic analysis for equieffective concentrations of dobutamine and epinephrine suggests subadditive effects. Conclusions Dobutamine inhibits epinephrine-induced production of cAMP in human lymphocytes and appears to be subadditive by clinical and isobolographic analyses of the cardiotonic effects. These findings suggest that combinations of dobutamine and epinephrine may be less than additive.


2021 ◽  
Author(s):  
Kaley M. Wilburn ◽  
Christine R. Montague ◽  
Bo Qin ◽  
Ashley K. Woods ◽  
Melissa S. Love ◽  
...  

There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required for cholesterol metabolism. Finally, in this work the pharmacokinetic properties of Rv1625c agonists are optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a novel role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.


Sign in / Sign up

Export Citation Format

Share Document