scholarly journals Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review

2020 ◽  
Vol 21 (3) ◽  
pp. 995 ◽  
Author(s):  
Yanhua Cui ◽  
Kai Miao ◽  
Siripitakyotin Niyaphorn ◽  
Xiaojun Qu

Gamma-aminobutyric acid (GABA) is widely distributed in nature and considered a potent bioactive compound with numerous and important physiological functions, such as anti-hypertensive and antidepressant activities. There is an ever-growing demand for GABA production in recent years. Lactic acid bacteria (LAB) are one of the most important GABA producers because of their food-grade nature and potential of producing GABA-rich functional foods directly. In this paper, the GABA-producing LAB species, the biosynthesis pathway of GABA by LAB, and the research progress of glutamate decarboxylase (GAD), the key enzyme of GABA biosynthesis, were reviewed. Furthermore, GABA production enhancement strategies are reviewed, from optimization of culture conditions and genetic engineering to physiology-oriented engineering approaches and co-culture methods. The advances in both the molecular mechanisms of GABA biosynthesis and the technologies of synthetic biology and genetic engineering will promote GABA production of LAB to meet people’s demand for GABA. The aim of the review is to provide an insight of microbial engineering for improved production of GABA by LAB in the future.

2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Alejandro Santos-Espinosa ◽  
Lilia María Beltrán-Barrientos ◽  
Ricardo Reyes-Díaz ◽  
Miguel Ángel Mazorra-Manzano ◽  
Adrián Hernández-Mendoza ◽  
...  

Author(s):  
Sharmineh Sharafi ◽  
Leila Nateghi ◽  
Shahriyar Yousefi

Background and Objectives: Gamma-aminobutyric acid (GABA) is a non-protein amino acid produced by lactic acid bacteria. Among GABA-producing bacteria, lactic acid bacteria have received more attention due to their probiotic nature and properties such as inhibiting pathogenic bacteria, strengthening the immune system, and so on. Materials and Methods: Investigation on the effect of three independent variables including pH (4.7, 4.9 and 5.1), glutamic acid (1, 2 and 3 mgg-1) and salt (2, 2.5 and 3%) on GABA production in low fat cheese by probiotic bacteria. Results: By increasing the amount of glutamic acid and decreasing the pH from 5.1 to 4.7, the amount of GABA production in ultra-filtration cheese significantly increased on the 15th and 30th days of production (p≤0.05), while by increasing the amount of salt the production GABA decreased on the 15th and 30th days. Simultaneous optimal conditions to achieve maximum GABA production in cheese on the 15th and 30th production day was respectively 167.7917 mg/kg-1 and 220.125 mg/ kg-1 using 3 mg/g glutamic acid, 2% salt at pH 4.7. Conclusion: The results showed that by identifying probiotic bacteria with the highest potential for GABA production and optimizing the culture medium, more GABA can be produced in food products and a positive step can be taken to produce pragmatic products and promote consumer health.


LWT ◽  
2014 ◽  
Vol 56 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Marina Diana ◽  
Alba Tres ◽  
Joan Quílez ◽  
Marta Llombart ◽  
Magdalena Rafecas

Sign in / Sign up

Export Citation Format

Share Document