Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation

2021 ◽  
pp. 105284
Author(s):  
Viola Galli ◽  
Manuel Venturi ◽  
Eleonora Mari ◽  
Simona Guerrini ◽  
Lisa Granchi
2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Alejandro Santos-Espinosa ◽  
Lilia María Beltrán-Barrientos ◽  
Ricardo Reyes-Díaz ◽  
Miguel Ángel Mazorra-Manzano ◽  
Adrián Hernández-Mendoza ◽  
...  

2019 ◽  
Vol 10 (5) ◽  
pp. 579-587 ◽  
Author(s):  
J.A. Valenzuela ◽  
A.B. Flórez ◽  
L. Vázquez ◽  
O.M. Vasek ◽  
B. Mayo

γ-Aminobutyric acid (GABA), an amino acid not used in protein synthesis, intervenes in several physiological functions and has both diuretic and calming effects in humans. Lactic acid bacteria (LAB) strains that produce GABA could be exploited for the manufacture of health-promoting GABA-enriched dairy products. In this study, 262 LAB strains isolated from traditional dairy products made from raw milk without starter cultures were screened for GABA production in culture media supplemented with 1% monosodium glutamate (MSG) using an enzymatic (GABase) method. About half of the strains (123) were found to be GABA producers. Of these, 24, among which were 16 Lactococcus lactis subsp. lactis and three Streptococcus thermophilus strains, produced >1 mM of GABA (range 1.01-2.81 mM) and were selected for further characterisation. GABA production was confirmed in most strains by culturing in 5 mM MSG followed by HPLC quantification. A majority of the strains were confirmed to be GABA producers by this method, although lower production levels were recorded. Using species-specific primers, the gene encoding glutamate decarboxylase (GAD) was PCR-amplified in all but one of the GABA producers analysed. Amplicons sequences were compared to one another and to those held in databases. Except for one Lactobacillus brevis strain, none of the 24 GABA producers investigated produced toxic biogenic amines, such as tyramine, histamine or cadaverine. They were therefore considered safe. Either alone, in mixtures, or in combination with industrial starter or adjunct cultures, these strains might be useful in the development of health-oriented dairy products.


2020 ◽  
Vol 21 (3) ◽  
pp. 995 ◽  
Author(s):  
Yanhua Cui ◽  
Kai Miao ◽  
Siripitakyotin Niyaphorn ◽  
Xiaojun Qu

Gamma-aminobutyric acid (GABA) is widely distributed in nature and considered a potent bioactive compound with numerous and important physiological functions, such as anti-hypertensive and antidepressant activities. There is an ever-growing demand for GABA production in recent years. Lactic acid bacteria (LAB) are one of the most important GABA producers because of their food-grade nature and potential of producing GABA-rich functional foods directly. In this paper, the GABA-producing LAB species, the biosynthesis pathway of GABA by LAB, and the research progress of glutamate decarboxylase (GAD), the key enzyme of GABA biosynthesis, were reviewed. Furthermore, GABA production enhancement strategies are reviewed, from optimization of culture conditions and genetic engineering to physiology-oriented engineering approaches and co-culture methods. The advances in both the molecular mechanisms of GABA biosynthesis and the technologies of synthetic biology and genetic engineering will promote GABA production of LAB to meet people’s demand for GABA. The aim of the review is to provide an insight of microbial engineering for improved production of GABA by LAB in the future.


Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


Author(s):  
Sharmineh Sharafi ◽  
Leila Nateghi ◽  
Shahriyar Yousefi

Background and Objectives: Gamma-aminobutyric acid (GABA) is a non-protein amino acid produced by lactic acid bacteria. Among GABA-producing bacteria, lactic acid bacteria have received more attention due to their probiotic nature and properties such as inhibiting pathogenic bacteria, strengthening the immune system, and so on. Materials and Methods: Investigation on the effect of three independent variables including pH (4.7, 4.9 and 5.1), glutamic acid (1, 2 and 3 mgg-1) and salt (2, 2.5 and 3%) on GABA production in low fat cheese by probiotic bacteria. Results: By increasing the amount of glutamic acid and decreasing the pH from 5.1 to 4.7, the amount of GABA production in ultra-filtration cheese significantly increased on the 15th and 30th days of production (p≤0.05), while by increasing the amount of salt the production GABA decreased on the 15th and 30th days. Simultaneous optimal conditions to achieve maximum GABA production in cheese on the 15th and 30th production day was respectively 167.7917 mg/kg-1 and 220.125 mg/ kg-1 using 3 mg/g glutamic acid, 2% salt at pH 4.7. Conclusion: The results showed that by identifying probiotic bacteria with the highest potential for GABA production and optimizing the culture medium, more GABA can be produced in food products and a positive step can be taken to produce pragmatic products and promote consumer health.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Elizaveta Gavrilova ◽  
Elizaveta Anisimova ◽  
Alsu Gabdelkhadieva ◽  
Elena Nikitina ◽  
Adel Vafina ◽  
...  

Abstract Background Raw milk, meat and plant materials are subjected to high risks of contamination by various pathogenic bacteria and thus their growth prevention is a great challenge in the food industry. Food fermentation by lactic acid bacteria (LAB) besides changing its organoleptic characteristics also helps to eliminate unfavorable microflora and represses growth of pathogens. To the date only few LABs has been reported to exhibit activity against bacteria embedded in the biofilms characterized by extreme resistance to antimicrobials, high exchange rate with resistance genes and represent high risk factor for foodborne disease development. Results Six novel LAB strains isolated from the clover silage exhibited pronounced antibacterial activity against biofilm embedded pathogens. We show explicitly that these strains demonstrate high acidification rate, completely repress the growth of E. coli, S. aureus and to a lesser extent P. aeruginosa as well as exhibit appropriate probiotic and milk-fermenting properties. Moreover, in contrast to the approved probiotic strain Lactobacillus plantarum 8PA3, the new isolates were able to efficiently eradicate preformed biofilms of these pathogens and prevent bacterial spreading originating from the biofilm. We suggest these strains as potential additives to the pre-cultures of conventional LAB strains as efficient tools targeting foodborne pathogens in order to prevent food contamination from either seeded raw material or biofilm-fouled equipment. Conclusions The AG10 strain identified as L. plantarum demonstrate attractive probiotic and milk fermentation properties as well as high resistance to simulated gastric conditions thus appearing perspective as a starter culture for the prevention of bacterial contamination originating from fouled equipment during milk fermentation.


Sign in / Sign up

Export Citation Format

Share Document