scholarly journals Calmodulin and Calmodulin Binding Proteins in Dictyostelium: A Primer

2020 ◽  
Vol 21 (4) ◽  
pp. 1210
Author(s):  
Danton H. O’Day ◽  
Ryan J. Taylor ◽  
Michael A. Myre

Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.

2021 ◽  
Vol 22 (4) ◽  
pp. 1722
Author(s):  
William D. Kim ◽  
Shyong Q. Yap ◽  
Robert J. Huber

Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2148 ◽  
Author(s):  
Shen Tang ◽  
Xiaonan Deng ◽  
Jie Jiang ◽  
Michael Kirberger ◽  
Jenny J. Yang

Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes. Due to the diverse coordination chemistry of calcium, and complexity associated with protein folding and binding cooperativity, the rational design of CaBP’s was anticipated to present multiple challenges. In this paper we will first discuss applications of statistical analysis of calcium binding sites in proteins and subsequent development of algorithms to predict and identify calcium binding proteins. Next, we report efforts to identify key determinants for calcium binding affinity, cooperativity and calcium dependent conformational changes using grafting and protein design. Finally, we report recent advances in designing protein calcium sensors to capture calcium dynamics in various cellular environments.


Biochemistry ◽  
1985 ◽  
Vol 24 (27) ◽  
pp. 8081-8086 ◽  
Author(s):  
Bradley B. Olwin ◽  
Daniel R. Storm

2009 ◽  
Vol 418 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Javier Traba ◽  
Jorgina Satrústegui ◽  
Araceli del Arco

The SCaMCs (small calcium-binding mitochondrial carriers) constitute a subfamily of mitochondrial carriers responsible for the ATP-Mg/Pi exchange with at least three paralogues in vertebrates. SCaMC members are proteins with two functional domains, the C-terminal transporter domain and the N-terminal domain which harbours calcium-binding EF-hands and faces the intermembrane space. In the present study, we have characterized a shortened fourth paralogue, SCaMC-3L (SCaMC-3-like; also named slc25a41), which lacks the calcium-binding N-terminal extension. SCaMC-3L orthologues are found exclusively in mammals, showing approx. 60% identity to the C-terminal half of SCaMC-3, its closest paralogue. In mammalian genomes, SCaMC-3 and SCaMC-3L genes are adjacent on the same chromosome, forming a head-to-tail tandem array, and show identical exon–intron boundaries, indicating that SCaMC-3L could have arisen from an SCaMC-3 ancestor by a partial duplication event which occurred prior to mammalian radiation. Expression and functional data suggest that, following the duplication event, SCaMC-3L has acquired more restrictive functions. Unlike the broadly expressed longer SCaMCs, mouse SCaMC-3L shows a limited expression pattern; it is preferentially expressed in testis and, at lower levels, in brain. SCaMC-3L transport activity was studied in yeast deficient in Sal1p, the calcium-dependent mitochondrial ATP-Mg/Pi carrier, co-expressing SCaMC-3L and mitochondrial-targeted luciferase, and it was found to perform ATP-Mg/Pi exchange, in a similar manner to Sal1p or other ATP-Mg/Pi carriers. However, metabolite transport through SCaMC-3L is calcium-independent, representing a novel mechanism involved in adenine nucleotide transport across the inner mitochondrial membrane, different to ADP/ATP translocases or long SCaMC paralogues.


1991 ◽  
Vol 275 (1) ◽  
pp. 93-97 ◽  
Author(s):  
N V Hayes ◽  
A F Bennett ◽  
A J Baines

The calcium-dependent regulatory protein calmodulin is a critical element in the machinery regulating exocytosis at nerve terminals. Okabe & Sobue [(1987) FEBS Lett. 213, 184-188] showed that calmodulin interacts with one of the proteins intimately connected with the neuronal exocytotic process, i.e. synapsin 1. We have investigated the site at which calmodulin interacts with synapsin 1. We find that it is possible to generate chemically cross-linked Ca2(+)-dependent complexes between synapsin 1 and calmodulin in vitro, and have used covalent cross-linking in conjunction with calmodulin affinity chromatography to identify fragments of synapsin 1 that interact with calmodulin. Ca2(+)-dependent calmodulin binding is restricted to the ‘head’ domain (residues 1-453 in bovine synapsin 1). Within this domain the binding site is located in a unique 11 kDa Staphylococcus aureus V8 proteinase generated fragment. This fragment does not contain the site for cyclic-AMP-dependent phosphorylation and therefore does not represent the N-terminus of the protein.


1987 ◽  
Vol 252 (3) ◽  
pp. C285-C289 ◽  
Author(s):  
D. B. Zimmer ◽  
L. J. Van Eldik

To understand the physiological role of the calcium-binding proteins S100 alpha and S100 beta, it is necessary to determine the distribution of these proteins and detect their intracellular targets in various tissues. The distribution of immunoreactive S100 alpha and S100 beta in various rat tissues was examined by radioimmunoassay. All tissues examined contained detectable S100, but the S100 beta/S100 alpha ratio in each tissue differed. Brain, adipose, and testes contained 18- to 40-fold more S100 beta than S100 alpha; skin and liver contained approximately equivalent amounts and kidney, spleen, and heart contained 8- to 75-fold more S100 alpha than S100 beta. Analysis of S100-binding proteins by gel overlay showed that each tissue possessed its own complement of binding proteins. The S100 beta-binding profile was indistinguishable from the S100 alpha-binding profile and both of these profiles were distinct from the calmodulin-binding profile. These observations suggest that the differential distribution and quantity of the individual S100 polypeptides and their binding proteins in various tissues may be important factors in determining S100 function.


1984 ◽  
Vol 72 (1) ◽  
pp. 121-133
Author(s):  
P.B. Moore ◽  
N. Kraus-Friedmann ◽  
J.R. Dedman

Calcium-dependent regulation of cellular processes is mediated by specific intracellular proteins. A newly described set of proteins isolated from chicken gizzard with Mr of 67 X 10(3), 35 X 10(3), 33 X 10(3) and 30 X 10(3) also express a hydrophobic site in the presence of calcium. These proteins are isolated from several other cellular tissues and are termed calcimedins. These proteins differ from calmodulin in isoelectric point, DEAE-cellulose binding characteristics and heat stability. The calcimedins do not activate calmodulin-dependent cyclic nucleotide phosphodiesterase but do activate a hepatic microsomal Ca2+ -ATPase system. Hence, the possibility is opened that calcium regulation of cellular processes is mediated by calcium-binding proteins in addition to calmodulin.


2012 ◽  
Vol 447 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Marie Boudsocq ◽  
Marie-Jo Droillard ◽  
Leslie Regad ◽  
Christiane Laurière

CDPKs (calcium-dependent protein kinases), which contain both calmodulin-like calcium binding and serine/threonine protein kinase domains, are only present in plants and some protozoans. Upon activation by a stimulus, they transduce the signal through phosphorylation cascades to induce downstream responses, including transcriptional regulation. To understand the functional specificities of CDPKs, 14 Arabidopsis CPKs (CDPKs in plants) representative of the three main subgroups were characterized at the biochemical level, using HA (haemagglutinin)-tagged CPKs expressed in planta. Most of them were partially or mainly associated with membranes, in agreement with acylation predictions. Importantly, CPKs displayed highly variable calcium-dependences for their kinase activities: seven CPKs from subgroups 1 and 2 were clearly sensitive to calcium with different intensities, whereas six CPKs from subgroup 3 exhibited low or no calcium sensitivity to two generic substrates. Interestingly, this apparent calcium-independence correlated with significant alterations in the predicted EF-hands of these kinases, although they all bound calcium. The noticeable exception, CPK25, was calcium-independent owing to the absence of functional EF-hands. Taken together, the results of the present study suggest that calcium binding differentially affects CDPK isoforms that may be activated by distinct molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document