scholarly journals Interpenetrating Hydrogel Networks Enhance Mechanical Stability, Rheological Properties, Release Behavior and Adhesiveness of Platelet-Rich Plasma

2020 ◽  
Vol 21 (4) ◽  
pp. 1399 ◽  
Author(s):  
Roberta Censi ◽  
Cristina Casadidio ◽  
Siyuan Deng ◽  
Maria Rosa Gigliobianco ◽  
Maria Giovanna Sabbieti ◽  
...  

Platelet-rich plasma (PRP) has attracted much attention for the treatment of articular cartilage defects or wounds due to its intrinsic content of growth factors relevant for tissue repair. However, the short residence time of PRP in vivo, due to the action of lytic enzymes, its weak mechanical properties and the consequent short-term release of bioactive factors has restricted its application and efficacy. The present work aimed at designing new formulation strategies for PRP, based on the use of platelet concentrate (PC)-loaded hydrogels or interpenetrating polymer networks, directed at improving mechanical stability and sustaining the release of bioactive growth factors over a prolonged time-span. The interpenetrating hydrogels comprised two polymer networks interlaced on a molecular scale: (a) a first covalent network of thermosensitive and biodegradable vinyl sulfone bearing p(hydroxypropyl methacrylamide-lacate)-polyethylene glycol triblock copolymers, tandem cross-linked by thermal gelation and Michael addition when combined with thiolated hyaluronic acid, and (b) a second network composed of cross-linked fibrin. The PC-loaded hydrogels, instead, was formed only by network (a). All the designed and successfully synthesized formulations greatly increased the stability of PRP in vitro, leading to significant increase in degradation time and storage modulus of PRP gel. The resulting viscoelastic networks showed the ability to controllably release platelet derived growth factor and transforming growth factr β1, and to improve the tissue adhesiveness of PRP. The newly developed hydrogels show great potential for application in the field of wound healing, cartilage repair and beyond.

2021 ◽  
Vol 41 ◽  
Author(s):  
Natália P.P. Freitas ◽  
Maria Márcia M.S. Maior ◽  
Beatriz A.P. Silva ◽  
Marcus R.L. Bezerra ◽  
José F. Nunes ◽  
...  

ABSTRACT: Platelet-rich plasma (PRP) has been considered a promising therapeutic alternative, since platelets are rich in growth factors that are used in the Regenerative Medicine field. However, fresh PRP cannot be stored for long periods. This study aimed to develop a protocol for obtaining lyophilized canine PRP capable of maintaining viability after its reconstitution. For that purpose, canine PRP extraction and lyophilization protocols were initially tested. Subsequently, assays were carried out to quantify the growth factors VEGF and TGF-β, before and after the lyophilization process, gelation test and the three-dimensional gel structure analysis of the reconstituted lyophilized PRP by electron microscopy, as well as in vitro cell proliferation test in lyophilized PRP gel. Additionally, the immunogenicity test was performed, using allogeneic samples of lyophilized PRP. The results showed that the lyophilized PRP had adequate therapeutic concentrations of growth factors VEGF and TGF-β (9.1pg/mL and 6161.6pg/mL, respectively). The reconstituted PRP gel after lyophilization showed an in vitro durability of 10 days. Its electron microscopy structure was similar to that of fresh PRP. In the cell proliferation test, an intense division process was verified in mesenchymal stem cells (MSCs) through the three-dimensional mesh structure of the lyophilized PRP gel. The immunogenicity test showed no evidence of an immune reaction. The findings were promising, suggesting the possibility of having a lyophilized canine PRP that can be marketed. New in vivo and in vitro studies must be carried out for therapeutic confirmation.


2018 ◽  
Vol 202 ◽  
pp. 288-298 ◽  
Author(s):  
Saundray Raj Soni ◽  
Nimmy Kumari ◽  
Bibhas K. Bhunia ◽  
Biswatrish Sarkar ◽  
Biman B. Mandal ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Isaac A. Rodriguez ◽  
Emily A. Growney Kalaf ◽  
Gary L. Bowlin ◽  
Scott A. Sell

Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP). PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in bothin vitroandin vivoscenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use.


RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 64344-64356 ◽  
Author(s):  
Rashmi Boppana ◽  
Raghavendra V. Kulkarni ◽  
G. Krishna Mohan ◽  
Srinivas Mutalik ◽  
Tejraj M. Aminabhavi

Novel pH-sensitive IPN microbeads exhibited drug release in response to changing pH and reduced side effects of ketoprofenin vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ilaria Giusti ◽  
Sandra D’Ascenzo ◽  
Annalisa Mancò ◽  
Gabriella Di Stefano ◽  
Marianna Di Francesco ◽  
...  

Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 106 plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 106, 1 × 106 plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, thesein vitrodata strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducingin vivotendon healing.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sorina Dinescu ◽  
Bianca Galateanu ◽  
Adriana Lungu ◽  
Eugen Radu ◽  
Sorin Nae ◽  
...  

Recent progress in tissue engineering and regenerative medicine envisages the use of cell-scaffold bioconstructs to best mimic the naturalin vivomicroenvironment. Our aim was not only to develop novel 3D porous scaffolds for regenerative applications by the association of gelatin (G), alginate (A), and polyacrylamide (PAA) major assets but also to evaluate theirin vitropotential to support human adipose-derived stem cells (hADSCs) adipogenesis. G-A-PAA biomatrix investigated in this work is an interesting substrate combining the advantages of the three individual constituents, namely, biodegradability of G, hydrophilicity of A and PAA, superior elasticity at compression with respect to the G-A and PAA controls, and the capacity to generate porous scaffolds. hADSCs inside these novel interpenetrating polymer networks (IPNs) were able to populate the entire scaffold structure and to display their characteristic spindle-likeshape as a consequence of a good interaction with G component of the matrices. Additionally, hADSCs proved to display the capacity to differentiate towards mature adipocytes, to accumulate lipids inside their cytoplasm, and to express perilipin late adipogenic marker inside novel IPNs described in this study. On long term, this newly designed biomatrix aims to represent a stem cell delivery system product dedicated for modern regenerative strategies.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 405-416 ◽  
Author(s):  
M. R Hardeman ◽  
Carina J L. Heynens

SummaryStorage experiments were performed at 4°, 25° and 37° C with platelet-rich plasma under sterile conditions. In some experiments also the effect of storing platelets at 4° C in whole blood was investigated.Before, during and after three days of storage, the platelets were tested at 37° C for their serotonin uptake and response to hypotonic shock. In addition some glycolytic intermediates were determined.A fair correlation was noticed between the serotonin uptake and hypotonic shock experiments. Both parameters were best maintained at 25° C. Also platelet counting, performed after the storage period, indicated 25° C as the best storage temperature. Determination of glycolytic intermediates did not justify any conclusion regarding the optimal storage temperature. Of the various anticoagulants studied, ACD and heparin gave the best results as to the serotonin uptake and hypotonic shock response, either with fresh or stored platelets. The use of EDTA resulted in the lowest activity, especially after storage.The results of these storage experiments in vitro, correspond well with those in vivo reported in the literature.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


Sign in / Sign up

Export Citation Format

Share Document