scholarly journals Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering

2020 ◽  
Vol 21 (5) ◽  
pp. 1764 ◽  
Author(s):  
Silvia Pisani ◽  
Stefania Croce ◽  
Enrica Chiesa ◽  
Rossella Dorati ◽  
Elisa Lenta ◽  
...  

Aim of work was to locate a simple, reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited, namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size, pore orientation, porosity, and pore distribution were produced using two different techniques, such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity, seeding efficiency, and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method, as these conditions successfully improved the cellularization of polymeric patches. Furthermore, the investigation provided interesting information on patches’ stability in physiological simulating experimental conditions. Considering the in vitro results, it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover, the protocol turned out to be simple, repeatable, and reproducible.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5096-5096
Author(s):  
Jing Chen ◽  
Glorymar Ibanez-Sanchez ◽  
Paul Calder ◽  
Mark G. Frattini

Abstract Background: Acute myeloid leukemia (AML) is a very aggressive bone marrow malignancy which carries a poor prognosis despite intensive chemotherapy. The treatment of relapsed and refractory AML remains suboptimal. Although more novel therapies are being introduced for AML, there is a limitation of appropriate, predictive, preclinical models available to identify and test novel therapies. In-vitro drug sensitivity testing of patient-derived AML cells is increasingly being used to facilitate treatment options. However, these tests are often done in suboptimal conditions with difficulty in the interpretation of results. Accumulating evidence has shown that the long-term, in-vitro, survival of primary AML cells can be supported with stromal co-culture, which would also take into account the influence of the surrounding tumor microenvironment. However, there has been no direct comparison of a stromal co-culture method to non-stromal growth method of primary AML cells. This is the first comprehensive direct comparison of the proliferation and immunophenotypes of primary AML cells under two different stromal conditions and cytokines, the results of which would not only highlight the importance of stromal cells to chemotherapy resistance but also lay the groundwork for the feasibility and importance of comparing it to non-stromal drug sensitivity testing. Methods: The proliferation and immunophenotypes of seven bio-banked, relapsed/refractory primary AML peripheral blood samples were assessed in 6-well plates under four culture conditions: 1) cell culture media only 2) in direct contact with HS-5 bone marrow stromal cells 3) in HS-5 conditioned media or 4) in a cocktail of four cytokines. Cell viability, cell count and immunophenotypes by fluorescently-conjugated antibodies against CD33, CD34, CD38, CD45, CD117, and CD90 were determined by flow cytometry weekly for 2 weeks. Results: Our results demonstrated a heterogeneous growth response among the seven patient samples in response to the four growth conditions. However, the end effect was that cytokines, HS-5 conditioned media and HS-5 stromal cells can all support the long-term proliferation and viability of the majority of primary AML samples. These three conditions showed statistically significant higher growth compared to the same primary cells cultured in media alone (p-values < 0.05). The degree of expansion was still significantly higher for those cells with cytokines than those with HS-5 conditioned media or stromal cells. Six of the 7 patient samples expanded with cytokine, up to 4-fold by 2 weeks of culture. In comparison 5 of the 7 patient samples expanded up to 3-fold with HS-5 stromal cells, and 4 of the 7 patient samples also expanded up to 3-fold with HS-5 conditioned media at 2 weeks of culture. For the 4 patients, whose cells were supported by both stromal cells and conditioned media, the degree of expansion was similar. Unexpectedly, one out of 7 patient samples had significantly higher expansion compared to all of the other patients in all growth condition, with a 9-fold expansion in cytokine and conditioned media, and a 12-fold expansion in HS-5 stromal cells. There was also a 3-fold expansion in media alone. Baseline AML immunophenotypes were preserved after 2 weeks of culture for all 4 growth conditions, with minimal differentiation. Conclusions: Unlike previous studies, which often investigated the long-term proliferation of primary AML cells with both cytokines and stromal support, we showed that each experimental condition alone can expand primary AML cells. In addition, cytokine support alone can expand primary AML cells at 2 weeks of culture for the majority of patient samples, independent of stromal support, a finding that has previously not been reported. Consistent with previous studies, our data also supports the conclusion that stromal support maintains long-term in-vitro expansion of primary AML cells. All three experimental conditions showed an overall effect of growth with high viability and maintenance of immunophenotypes at 2 weeks of culture. The direct comparison of drug screening under these three experimental conditions would permit the exploration of the protective effect of the bone marrow microenvironment on AML cells allowing for the identification of individualized therapeutic options, while also allowing for comparison to non-stromal based in-vitro assays. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ya-fei Qin ◽  
De-jun Kong ◽  
Hong Qin ◽  
Yang-lin Zhu ◽  
Guang-ming Li ◽  
...  

BackgroundChronic rejection characterized by chronic allograft vasculopathy (CAV) remains a major obstacle to long-term graft survival. Due to multiple complicated mechanisms involved, a novel therapy for CAV remains exploration. Although mesenchymal stromal cells (MSCs) have been ubiquitously applied to various refractory immune-related diseases, rare research makes a thorough inquiry in CAV. Meanwhile, melatonin (MT), a wide spectrum of immunomodulator, plays a non-negligible role in transplantation immunity. Here, we have investigated the synergistic effects of MT in combination with MSCs in attenuation of CAV.MethodsC57BL/6 (B6) mouse recipients receiving BALB/c mouse donor aorta transplantation have been treated with MT and/or adipose-derived MSCs. Graft pathological changes, intragraft immunocyte infiltration, splenic immune cell populations, circulating donor-specific antibodies levels, cytokine profiles were detected on post-operative day 40. The proliferation capacity of CD4+ and CD8+ T cells, populations of Th1, Th17, and Tregs were also assessed in vitro.ResultsGrafts in untreated recipients developed a typical pathological feature of CAV characterized by intimal thickening 40 days after transplantation. Compared to untreated and monotherapy groups, MT in combination with MSCs effectively ameliorated pathological changes of aorta grafts indicated by markedly decreased levels of intimal hyperplasia and the infiltration of CD4+ cells, CD8+ cells, and macrophages, but elevated infiltration of Foxp3+ cells. MT either alone or in combination with MSCs effectively inhibited the proliferation of T cells, decreased populations of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. MT synergized with MSCs displayed much fewer splenic populations of CD4+ and CD8+ T cells, Th1 cells, Th17 cells, CD4+ central memory T cells (Tcm), as well as effector memory T cells (Tem) in aorta transplant recipients. In addition, the percentage of splenic Tregs was substantially increased in the combination therapy group. Furthermore, MT combined with MSCs markedly reduced serum levels of circulating allospecific IgG and IgM, as well as decreased the levels of pro-inflammatory IFN-γ, TNF-α, IL-1β, IL-6, IL-17A, and MCP-1, but increased the level of IL-10 in the recipients.ConclusionsThese data suggest that MT has synergy with MSCs to markedly attenuate CAV and provide a novel therapeutic strategy to improve the long-term allograft acceptance in transplant recipients.


2020 ◽  
Author(s):  
Julia Fernández-Pérez ◽  
Peter W. Madden ◽  
Robert Thomas Brady ◽  
Peter F. Nowlan ◽  
Mark Ahearne

AbstractDecellularized porcine corneal scaffolds are a potential alternative to human cornea for keratoplasty. Although clinical trials have reported promising results, there can be corneal haze or scar tissue. Here, we examined if recellularizing the scaffolds with human keratocytes would result in a better outcome. Scaffolds were prepared that retained little DNA (14.89 ± 5.56 ng/mg) and demonstrated a lack of cytotoxicity by in vitro. The scaffolds were recellularized using human corneal stromal cells and cultured for between 14 in serum-supplemented media followed by a further 14 days in either serum free or serum-supplemented media. All groups showed full-depth cell penetration after 14 days. When serum was present, staining for ALDH3A1 remained weak but after serum-free culture, staining was brighter and the keratocytes adopted a native dendritic morphology with an increase (p < 0.05) of keratocan, decorin, lumican and CD34 gene expression. A rabbit anterior lamellar keratoplasty model was used to compare implanting a 250 µm thick decellularized lenticule against one that had been recellularized with human stromal cells. In both groups, host rabbit epithelium covered the implants, but transparency was not restored after 3 months. Post-mortem histology showed under the epithelium, a less-compact collagen layer, which appeared to be a regenerating zone with some α-SMA staining, indicating fibrotic cells. In the posterior scaffold, ALDH1A1 staining was present in all the acellular scaffold, but in only one of the recellularized lenticules. We conclude that recellularization with keratocytes alone may not be sufficiently beneficial to justify introducing allogeneic cells without concurrent treatment to further manage keratocyte phenotype.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anton Selich ◽  
Katharina Zimmermann ◽  
Michel Tenspolde ◽  
Oliver Dittrich-Breiholz ◽  
Constantin von Kaisenberg ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are used in over 800 clinical trials mainly due to their immune inhibitory activity. Umbilical cord (UC), the second leading source of clinically used MSCs, is usually cut in small tissue pieces. Subsequent cultivation leads to a continuous outgrowth of MSC explant monolayers (MSC-EMs) for months. Currently, the first MSC-EM culture takes approximately 2 weeks to grow out, which is then expanded and applied to patients. The initiating tissue pieces are then discarded. However, when UC pieces are transferred to new culture dishes, MSC-EMs continue to grow out. In case the functional integrity of these cells is maintained, later induced cultures could also be expanded and used for cell therapy. This would drastically increase the number of available cells for each patient. To test the functionality of MSC-EMs from early and late induction time points, we compared the first cultures to those initiated after 2 months by investigating their clonality and immunomodulatory capacity. Methods We analyzed the clonal composition of MSC-EM cultures by umbilical cord piece transduction using integrating lentiviral vectors harboring genetic barcodes assessed by high-throughput sequencing. We investigated the transcriptome of these cultures by microarrays. Finally, the secretome was analyzed by multiplexed ELISAs, in vitro assays, and in vivo in mice. Results DNA barcode analysis showed polyclonal MSC-EMs even after months of induction cycles. A transcriptome and secretome analyses of early and late MSC cultures showed only minor changes over time. However, upon activation with TNF-α and IFN-γ, cells from both induction time points produced a multitude of immunomodulatory cytokines. Interestingly, the later induced MSC-EMs produced higher amounts of cytokines. To test whether the different cytokine levels were in a therapeutically relevant range, we used conditioned medium (CM) in an in vitro MLR and an in vivo killing assay. CM from late induced MSC-EMs was at least as immune inhibitory as CM from early induced MSC-EMs. Conclusion Human umbilical cord maintains a microenvironment for the long-term induction of polyclonal and immune inhibitory active MSCs for months. Thus, our results would offer the possibility to drastically increase the number of therapeutically applicable MSCs for a substantial amount of patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Huang ◽  
Yang Xue ◽  
Jinliang Wu ◽  
Qing Zhan ◽  
Jiangmin Zhao

We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1348-1354 ◽  
Author(s):  
A Johnson ◽  
K Dorshkind

Abstract Hemopoiesis in long-term bone marrow cultures (LTBMC) is dependent on adherent stromal cells that form an in vitro hemopoietic microenvironment. Myeloid bone marrow cultures (MBMC) are optimal for myelopoiesis, while lymphoid bone marrow cultures (LBMC) only support B lymphopoiesis. The experiments reported here have made a comparative analysis of the two cultures to determine whether the stromal cells that establish in vitro are restricted to the support of myelopoiesis or lymphopoiesis, respectively, and to examine how the different culture conditions affect stromal cell physiology. In order to facilitate this analysis, purified populations of MBMC and LBMC stroma were prepared by treating the LTBMC with the antibiotic mycophenolic acid; this results in the elimination of hemopoietic cells while retaining purified populations of functional stroma. Stromal cell cultures prepared and maintained under MBMC conditions secreted myeloid growth factors that stimulated the growth of granulocyte-macrophage colonies, while no such activity was detected from purified LBMC stromal cultures. However, this was not due to the inability of LBMC stroma to mediate this function. Transfer of LBMC stromal cultures to MBMC conditions resulted in an induction of myeloid growth factor secretion. When seeded under these conditions with stromal cell- depleted populations of hemopoietic cells, obtained by passing marrow through nylon wool columns, the LBMC stromal cells could support long- term myelopoiesis. Conversely, transfer of MBMC stroma to LBMC conditions resulted in a cessation of myeloid growth factor secretion; on seeding these cultures with nylon wool-passed marrow, B lymphopoiesis, but not myelopoiesis, initiated. These findings indicate that the stroma in the different LTBMC are not restricted in their hemopoietic support capacity but are sensitive to culture conditions in a manner that may affect the type of microenvironment formed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1361-1361
Author(s):  
Elisa Montelatici ◽  
Gabriella Andriolo ◽  
Mihaela Crisan ◽  
Rosaria Giordano ◽  
Paolo Rebulla ◽  
...  

Abstract Mesenchymal stem cells (MSC) can be derived selectively in culture from multiple organs, an omnipresence we have recently suggested to be explained by the perivascular location of native MSC ancestors within intact tissues (Crisan et al. 2008, in press). We have now analyzed the ability of MSC extracted pro- or retrospectively from different human tissues to support hematopoiesis. MSC were either classically derived in primary cultures of umbilical cord blood (UCB) lineage-depleted mononuclear cells (n=3) or enzymatically dissociated adult adipose tissue (n=3), or grown as CD146+ NG2+ CD34-CD56- CD45- pericytes (n=2) purified by flow cytometry from fetal skeletal muscle and cultured over the long term. In both settings, identical MSC were obtained that maintained a stable CD146+ CD90+ CD73+ CD105+ CD34- CD45- surface phenotype and could differentiate into skeletal muscle, fat, bone and cartilage. CD34+ hematopoietic progenitors (n=3) immunoselected from term UCB were seeded (5×10e3cells/cm2 in triplicate) onto confluent irradiated layers of MSC derived from UCB, adipose tissue or fetal muscle pericytes (MSCu, MSCa and MSCmp, respectively) or, as a control, MS5 bone marrow stromal cells that allow the proliferation of very primitive human progenitor cells. All studies were approved by the relevant institutional regulatory board. The cells were cocultured for 5 weeks in a classical long-term culture-initiating cell assay in a complete medium (MyeloCult H5100, Stem Cell Technologies) containing hydrocortisone but no added cytokine. Wells were scored daily for the presence of cobblestone areas (CA) and half of the medium was replaced every week. Eventually, trypsinized cells from each well were characterized by flow cytometry for the expression of hematopoietic cell markers and assayed for CFC potential. After 14 days of incubation, colonies grown in semi-solid medium were scored as derived from colony forming units (CFU)-granulocyte, erythroid, macrophage, megakaryocyte (GEMM) and as high-proliferative-potential colony precursors (HPPC), the most primitive hematopoietic cell so far identified in a clonogenic assay in vitro. Within the CD45+ gate, all trypsinized cultures contained comparable percentages of CD34+lin- cells (MSCu: 51±9%; MSCa: 58±14%; MSCmp: 61±19%; MS5: 59±18%), the most immature hematopoietic cell compartment maintained during the long-term coculture. MSCu and MSCmp supported a similar cell proliferation during the whole culture while on MSCa, CA formed very rapidly and consistently but eventually decreased over the long-term culture. Interestingly, MSCu and MSCmp supported the development of the highest numbers of HPPC and of CFU giving rise to the largest GEMM colonies, as compared to MSCa that gave the same results as the control MS5 cell line. In summary, all MSCs tested were able to support hematopoiesis and CA formation, albeit with differences in growth kinetics and morphology of the colonies. Herein we show for the first time that purified human perivascular cells exhibit robust hematopoiesis support in vitro, in addition to multilineage mesodermal developmental potential. In conclusion, we demonstrate that MSC from novel sources distinct from the bone marrow are able to support hematopoiesis. These results further sustain the identity, beyond acronyms, between marrow stromal cells, long known for their support of hematopoiesis, and mesenchymal stem cells that gained more recent credit in the field of regenerative medicine because of their multilineage differentiation potential.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e18535-e18535
Author(s):  
Jing Chen ◽  
Glorymar Ibanez Sanchez ◽  
Paul Calder ◽  
Mark G. Frattini

e18535 Background: To individualize therapy for relapsed/refractory AML patients, optimal in-vitro culture conditions to support primary leukemic cells are essential for drug sensitivity testing. Our lab has validated a high throughput chemosensitivity assay with primary AML cells maintained by growth factors (cytokines); however, growth factors have not been shown to support long-term assays of primary AML cells. Stromal cells of the tumor microenvironment are crucial to maintain normal hematopoiesis and leukemic cells and have been shown to support long term in-vitro expansion of primary AML cells. However, there is little information characterizing these growth conditions. The aim of this study was to compare long-term proliferation and phenotypes of primary AML cells with growth factors or stromal support to best determine their utility as a platform for drug sensitivity testing in functional assays. Methods: Patient-derived AML cells were cultured in 96-well plates in: 1) cell culture medium only 2) Human HS5 or HS27 stromal cells 3) HS5 or HS27 stroma-conditioned media or 4) cytokine cocktail. Viability readout by Guava ViaCount and leukemic cell surface phenotypes by fluorescently-conjugated antibodies were performed weekly over 3 weeks. Results: Primary AML cells cultured with only cytokines maintained proliferation at 3 weeks. In comparison, AML cells cultured in HS5 stroma-conditioned medium also maintained proliferation at a similar rate at 3 weeks, while co-culture with HS5 stromal cells demonstrated significantly higher proliferation. Leukemic immunophenotypes were maintained for all growth conditions over 3 weeks. Conclusions: Contrary to known data, primary AML cells with cytokines continued to expand at 3 weeks, at a similar rate to HS5 stroma-conditioned medium, a finding that has not been reported. Consistent with previous studies, we confirmed that stromal cells such as HS5 can provide long-term in-vitro expansion of primary AML cells, which cannot be substituted by stroma-conditioned medium. The ability to maintain long-term expansion of primary AML cells by both cytokines and stromal cells sets up a platform for a direct comparison of high throughput drug sensitivity testing under these growth conditions.


Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1348-1354 ◽  
Author(s):  
A Johnson ◽  
K Dorshkind

Hemopoiesis in long-term bone marrow cultures (LTBMC) is dependent on adherent stromal cells that form an in vitro hemopoietic microenvironment. Myeloid bone marrow cultures (MBMC) are optimal for myelopoiesis, while lymphoid bone marrow cultures (LBMC) only support B lymphopoiesis. The experiments reported here have made a comparative analysis of the two cultures to determine whether the stromal cells that establish in vitro are restricted to the support of myelopoiesis or lymphopoiesis, respectively, and to examine how the different culture conditions affect stromal cell physiology. In order to facilitate this analysis, purified populations of MBMC and LBMC stroma were prepared by treating the LTBMC with the antibiotic mycophenolic acid; this results in the elimination of hemopoietic cells while retaining purified populations of functional stroma. Stromal cell cultures prepared and maintained under MBMC conditions secreted myeloid growth factors that stimulated the growth of granulocyte-macrophage colonies, while no such activity was detected from purified LBMC stromal cultures. However, this was not due to the inability of LBMC stroma to mediate this function. Transfer of LBMC stromal cultures to MBMC conditions resulted in an induction of myeloid growth factor secretion. When seeded under these conditions with stromal cell- depleted populations of hemopoietic cells, obtained by passing marrow through nylon wool columns, the LBMC stromal cells could support long- term myelopoiesis. Conversely, transfer of MBMC stroma to LBMC conditions resulted in a cessation of myeloid growth factor secretion; on seeding these cultures with nylon wool-passed marrow, B lymphopoiesis, but not myelopoiesis, initiated. These findings indicate that the stroma in the different LTBMC are not restricted in their hemopoietic support capacity but are sensitive to culture conditions in a manner that may affect the type of microenvironment formed.


Sign in / Sign up

Export Citation Format

Share Document