scholarly journals Comparative Transcriptome Analysis Reveals the Potential Mechanism of Abortion in Tobacco sua-Cytoplasmic Male Sterility

2020 ◽  
Vol 21 (7) ◽  
pp. 2445
Author(s):  
Zhiwen Liu ◽  
Yanfang Liu ◽  
Yuhe Sun ◽  
Aiguo Yang ◽  
Fengxia Li

sua-CMS (cytoplasmic male sterility) is the only male sterile system in tobacco breeding, but the mechanism of abortion is unclear. Cytological characteristics show that abortion in the sua-CMS line msZY occurs before the differentiation of sporogenous cells. In this study, a comparative transcriptomic analysis was conducted on flower buds at the abortion stage of msZY and its male fertile control ZY. A total of 462 differentially expressed genes were identified in msZY and ZY, which were enriched via protein processing in the endoplasmic reticulum (ER), oxidative phosphorylation, photosynthesis, and circadian rhythm-plant by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most genes were downregulated in the ER stress pathway, heat-shock protein family, F1F0-ATPase encoding by the mitochondrial genome, and differentiation of stamens. Genes in the programmed cell death (PCD) pathway were upregulated in msZY. The transcriptome results were consistent with those of qRT-PCR. Ultrastructural and physiological analyses indicted active vacuole PCD and low ATP content in msZY young flower buds. We speculated that PCD and a deficiency in ATP synthesis are essential for the abortion of sua-CMS. This study reveals the potential mechanism of abortion of tobacco sua-CMS.

2019 ◽  
Vol 20 (12) ◽  
pp. 2869 ◽  
Author(s):  
Xianlong Ding ◽  
Xuan Wang ◽  
Qiang Li ◽  
Lifeng Yu ◽  
Qijian Song ◽  
...  

Abnormal reactive oxygen species (ROS) may mediate cytoplasmic male sterility (CMS). To observe the effect of ROS on soybean CMS, metabolite content and antioxidant enzyme activity in the flower buds between soybean N8855-derived CMS line and its maintainer were compared. Of the 612 metabolites identified, a total of 74 metabolites were significantly differentiated in flower buds between CMS line and its maintainer. The differential metabolites involved 32 differential flavonoids, 13 differential phenolamides, and 1 differential oxidized glutathione (GSSG) belonging to a non-enzymatic ROS scavenging system. We observed lower levels of flavonoids and antioxidant enzyme activities in flower buds of the CMS line than in its maintainer. Our results suggest that deficiencies of enzymatic and non-enzymatic ROS scavenging systems in soybean CMS line cannot eliminate ROS in anthers effectively, excessive accumulation of ROS triggered programmed cell death and ultimately resulted in pollen abortion of soybean CMS line.


HortScience ◽  
2019 ◽  
Vol 54 (7) ◽  
pp. 1149-1155
Author(s):  
Huan Xiong ◽  
Ping Chen ◽  
Zhoujun Zhu ◽  
Ya Chen ◽  
Feng Zou ◽  
...  

Camellia oleifera is an important woody tree species in China that produces edible oil. Although sterile male C. oleifera plants play an important role in hybrid breeding, the possible cytological characteristics of pollen abortion remain unknown. To characterize the pollen abortion process, a genic petaloid-type sterile male C. oleifera ‘X1’ plant was investigated using a cytological method. The results showed that in male-fertile plants, the anthers were full and butterfly shaped, the pollen viability was as high as 97.5%, and the development of the tapetum and anther vascular bundles was normal. However, in male-sterile C. oleifera ‘X1’, petaloidy in the anther was observed, and the pollen vitality was as low as 4.5%. Pollen abortion in sterile C. oleifera ‘X1’ anthers occurred from the microspore stage to the mature pollen period. Further cytological analyses revealed an abnormally enlarged tapetum and retarded tapetum degeneration, suggesting that insufficient nutrients were provided for microspore development. Moreover, the anther vascular bundles displayed hyperplasia, and the pollen sac area became increasingly smaller, causing most anthers to be sterile and to have few pollen grains. Taken together, the results indicate that petaloid-type male sterility in C. oleifera may be attributed to abnormal development of the tapetum and anther vascular bundles. The findings clarify the pollen abortion period and the cytological characteristics of petaloid-type cytoplasmic male sterility in C. oleifera, and lay a solid foundation for the male sterile line in C. oleifera hybrid breeding.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ayumu Takatsuka ◽  
Tomohiko Kazama ◽  
Kinya Toriyama

Abstract Background Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. Findings A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. Conclusions The orf312 gene is a promising candidate for CMS-associated gene in TAA.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1317-1328
Author(s):  
Anita A de Haan ◽  
Hans P Koelewijn ◽  
Maria P J Hundscheid ◽  
Jos M M Van Damme

Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with “standard” male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an “expected” restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


2012 ◽  
Vol 48 (No. 3) ◽  
pp. 139-142 ◽  
Author(s):  
L. Havlíčková ◽  
V. Čurn ◽  
E. Jozová ◽  
V. Kučera ◽  
M. Vyvadilová ◽  
...  

Until now in Europe has not been cultivated any hybrid cultivar of oilseed rape based on the Shaan 2A cytoplasmic male sterility (CMS), a widely used CMS system in China. The aim of Czech breeders now is to produce new, improved cultivars of rapeseed based on this CMS system. Sterile Shaan 2A CMS line (S; rf/rf), its corresponding maintainers (N; rf/rf) and fertility restorers (S; Rf/Rf) were analyzed on molecular level for the presence of functional CMS cytoplasm. Two new primer pairs covering CMS-associated gene (so called orf224-1) present in Shaan 2A CMS line were developed and selection capability of the developed primers was successfully evaluated. These primers can be used for early selection of plants with functional Shaan 2A CMS system in breeding programmes.


2019 ◽  
Vol 20 (3) ◽  
pp. 578 ◽  
Author(s):  
Peng Wang ◽  
Qiaohua Lu ◽  
Yixin Ai ◽  
Yihao Wang ◽  
Tiantian Li ◽  
...  

Cytoplasmic male sterility (CMS), which is controlled by mitochondrial genes, is an important trait for commercial hybrid seed production. So far, genes controlling this trait are still not clear in pepper. In this study, complete mitochondrial genomes were sequenced and assembled for the CMS line 138A and its maintainer line 138B. The genome size of 138A is 504,210 bp, which is 8618 bp shorter than that of 138B. Meanwhile, more than 214 and 215 open reading frames longer than 100 amino acids (aas) were identified in 138A and 138B, respectively. Mitochondrial genome structure of 138A was quite different from that of 138B, indicating the existence of recombination and rearrangement events. Based on the mitochondrial genome sequence and structure variations, mitochondrion of 138A and FS4401, a Korean origin CMS line, may have inherited from a common female ancestor, but their CMS traits did originate separately. Candidate gene selection was performed according to the published characteristics of the CMS genes, including the presence SNPs and InDels, located in unique regions, their chimeric structure, co-transcription, and transmembrane domain. A total of 35 ORFs were considered as potential candidate genes and 14 of these were selected, with orf300a and 0rf314a as strong candidates. A new marker, orf300a, was developed which did co-segregate with the CMS trait.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shi-Fei Sang ◽  
De-Sheng Mei ◽  
Jia Liu ◽  
Qamar U. Zaman ◽  
Hai-Yan Zhang ◽  
...  

Abstract Background Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. Results Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. Conclusions Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.


1969 ◽  
Vol 20 (2) ◽  
pp. 227 ◽  
Author(s):  
KS McWhirter

A type of male sterility found in two Desmodium plants of probably interspecific hybrid origin was cytoplasmically inherited. The cytoplasmic male-sterile character was incorporated in the tropical legume Desmodium sandwicense by backcrossing. In this genetic background pollen sterility was complete. The male-sterile character was not graft-transmissible, and it produced no detectable pleiotropic effects on growth and development. Desmodium intortum gave restoration of pollen fertility in Fl hybrids with male-sterile lines of D. sandwicense. Restored F1 hybrids produced apparently normal pollen, but tests of functional ability of the pollen disclosed that pollen fertility was less than that of Fl hybrids with normal cytoplasm. Incomplete restoration of fertility was not due to heterozygosity of fertility-restoring genes with gametophytic expression, since fertility-restoring genes were shown to act sporophytically. The results established the occurrence in the legume Desmodium of a system of determination of the male-sterile, fertility-restored phenotypes that is similar to the cytoplasmic male sterility systems described in many other angiosperm plants. A scheme utilizing the genetic stocks produced in this study for commercial production of the interspecific hybrid D. sandwicense x D. intortum as a cultivar is presented.


Genome ◽  
1992 ◽  
Vol 35 (4) ◽  
pp. 653-658 ◽  
Author(s):  
M. M. Kruleva ◽  
A. B. Korol ◽  
T. G. Dankov ◽  
V. G. Skorpan ◽  
I. A. Preygel

The effect of four isogenic cytoplasmic types, normal, Salvador, Texas, and Charrua (the latter three causing male sterility), on the process of chiasma formation has been studied using two different maize hybrids. The cytoplasmic male sterility determinants have been shown to reduce the rate of interstitial exchanges per nucleus and per bivalent and the frequency of univalents. Increased variation between plants and relative stability of the intercellular variation within a plant have been observed for the parameters studied. It is concluded that the determinants of cytoplasmic sterility lower the probability of additional exchanges (relative to the obligate one) and reduce the frequency of premature disruption of one-exchange chromosome associations.Key words: maize, chiasma frequency, male sterile cytoplasm, univalent formation, genotype × cytoplasm interaction.


Sign in / Sign up

Export Citation Format

Share Document