scholarly journals Simultaneous Monitoring of Multi-Enzyme Activity and Concentration in Tumor Using a Triply Labeled Fluorescent In Vivo Imaging Probe

2020 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Jenny Tam ◽  
Alexander Pilozzi ◽  
Umar Mahmood ◽  
Xudong Huang

The use of fluorescent imaging probes that monitor the activity of proteases that experience an increase in expression and activity in tumors is well established. These probes can be conjugated to nanoparticles of iron oxide, creating a multimodal probe serving as both a magnetic resonance imaging (MRI) agent and an indicator of local protease activity. Previous works describe probes for cathepsin D (CatD) and metalloproteinase-2 (MMP2) protease activity grafted to cross-linked iron oxide nanoparticles (CLIO). Herein, we have synthesized a triply labeled fluorescent iron oxide nanoparticle molecular imaging (MI) probe, including an AF750 substrate concentration reporter along with probes for cathepsin B (CatB) sand MMP2 protease activity. The reporter provides a baseline signal from which to compare the activity of the two proteases. The activity of the MI probe was verified through incubation with the proteases and tested in vitro using the human HT29 tumor cell line and in vivo using female nude mice injected with HT29 cells. We found the MI probe had the appropriate specificity to the activity of their respective proteases, and the reporter dye did not activate when incubated in the presence of only MMP2 and CatB. Probe fluorescent activity was confirmed in vitro, and reporter signal activation was also noted. The fluorescent activity was also visible in vivo, with injected HT29 cells exhibiting fluorescence, distinguishing them from the rest of the animal. The reporter signal was also observable in vivo, which allowed the signal intensities of the protease probes to be corrected; this is a unique feature of this MI probe design.

2008 ◽  
Vol 108 (2) ◽  
pp. 320-329 ◽  
Author(s):  
Xing Wu ◽  
Jin Hu ◽  
Liangfu Zhou ◽  
Ying Mao ◽  
Bojie Yang ◽  
...  

Object Mesenchymal stem cells (MSCs) have been shown to migrate toward tumors, but their distribution pattern in gliomas has not been completely portrayed. The primary purpose of the study was to assay the tropism capacity of MSCs to gliomas, to delineate the pattern of MSC distribution in gliomas after systemic injection, and to track the migration and incorporation of magnetically labeled MSCs using 1.5-T magnetic resonance (MR) imaging. Methods The MSCs from Fischer 344 rats were colabeled with superparamagnetic iron oxide nanoparticles (SPIO) and enhanced green fluorescent protein (EGFP). The tropism capacity of MSCs was quantitatively assayed in vitro using the Transwell system. To track the migration of MSCs in vivo, MR imaging was performed both 7 and 14 days after systemic administration of labeled MSCs. After MR imaging, the distribution patterns of MSCs in rats with gliomas were examined using Prussian blue and fluorescence staining. Results The in vitro study showed that MSCs possessed significantly greater migratory capacity than fibroblast cells (p < 0.001) and that lysis of F98 glioma cells and cultured F98 cells showed a greater capacity to induce migration of cells than other stimuli (p < 0.05). Seven days after MSC transplantation, the SPIO–EGFP colabeled cells were distributed throughout the tumor, where a well-defined dark hypointense region was represented on gradient echo sequences. After 14 days, most of the colabeled MSCs were found at the border between the tumor and normal parenchyma, which was represented on gradient echo sequences as diluted amorphous dark areas at the edge of the tumors. Conclusions This study demonstrated that systemically transplanted MSCs migrate toward gliomas with high specificity in a temporal–spatial pattern, which can be tracked using MR imaging.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Weiqiong Ma ◽  
Qi Xie ◽  
Baolin Zhang ◽  
Huixian Chen ◽  
Jianyi Tang ◽  
...  

Magnetic resonance imaging (MRI) combined with contrast agents is believed to be useful for stem cell tracking in vivo, and the aim of this research was to investigate the biosafety and neural induction of SD rat-originated adipose derived stem cells (ADSCs) using cationic superparamagnetic iron oxide (SPIO) nanoparticle which was synthesized by the improved polyol method, in order to allow visualization using in vitro MRI. The scan protocols were performed with T2-mapping sequence; meanwhile, the ultrastructure of labeled cells was observed by transmission electron microscopy (TEM) while the iron content was measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). After neural induction, nestin and NSE (neural markers) were obviously expressed. In vitro MRI showed that the cationic PEG/PEI-modified SPIO nanoparticles could achieve great relaxation performance and favourable longevity. And the ICP-AES quantified the lowest iron content that could be detected by MRI as 1.56~1.8 pg/cell. This study showed that the cationic SPIO could be directly used to label ADSCs, which could then inductively differentiate into nerve and be imaged by in vitro MRI, which would exhibit important guiding significance for the further in vivo MRI towards animal models with neurodegenerative disorders.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
MI Khot ◽  
M Levenstein ◽  
R Coppo ◽  
J Kondo ◽  
M Inoue ◽  
...  

Abstract Introduction Three-dimensional (3D) cell models have gained reputation as better representations of in vivo cancers as compared to monolayered cultures. Recently, patient tumour tissue-derived organoids have advanced the scope of complex in vitro models, by allowing patient-specific tumour cultures to be generated for developing new medicines and patient-tailored treatments. Integrating 3D cell and organoid culturing into microfluidics, can streamline traditional protocols and allow complex and precise high-throughput experiments to be performed with ease. Method Patient-derived colorectal cancer tissue-originated organoidal spheroids (CTOS) cultures were acquired from Kyoto University, Japan. CTOS were cultured in Matrigel and stem-cell media. CTOS were treated with 5-fluorouracil and cytotoxicity evaluated via fluorescent imaging and ATP assay. CTOS were embedded, sectioned and subjected to H&E staining and immunofluorescence for ABCG2 and Ki67 proteins. HT29 colorectal cancer spheroids were produced on microfluidic devices using cell suspensions and subjected to 5-fluorouracil treatment via fluid flow. Cytotoxicity was evaluated through fluorescent imaging and LDH assay. Result 5-fluorouracil dose-dependent reduction in cell viability was observed in CTOS cultures (p&lt;0.01). Colorectal CTOS cultures retained the histology, tissue architecture and protein expression of the colonic epithelial structure. Uniform 3D HT29 spheroids were generated in the microfluidic devices. 5-fluorouracil treatment of spheroids and cytotoxic analysis was achieved conveniently through fluid flow. Conclusion Patient-derived CTOS are better complex models of in vivo cancers than 3D cell models and can improve the clinical translation of novel treatments. Microfluidics can streamline high-throughput screening and reduce the practical difficulties of conventional organoid and 3D cell culturing. Take-home message Organoids are the most advanced in vitro models of clinical cancers. Microfluidics can streamline and improve traditional laboratory experiments.


1988 ◽  
Vol 91 (2) ◽  
pp. 281-286
Author(s):  
M.C. Copeman ◽  
H. Harris

It has been shown that when malignant tumour cells are fused with normal fibroblasts the suppression of malignancy in the hybrids is linked to their ability to produce a collagenous extracellular matrix in vivo. When, as a consequence of chromosome loss, segregants arise that reacquire malignancy, these do not produce any detectable matrix. In this paper we examine the main components of the extracellular matrix produced in vitro by hybrids between malignant mouse melanoma cells and normal mouse fibroblasts. Hybrids in which malignancy is suppressed synthesize about ten times as much type 1 procollagen as the malignant segregants derived from them; they also retain more fibronectin in the cell layer and release less protease activity into the medium. Malignant segregants more closely resemble the parental melanoma cells in producing fibronectin and mainly types IV and V procollagen. When hybrid cells in which malignancy is initially suppressed are grown continuously in vitro, the production of type I procollagen declines, and the production of type V procollagen and the release of protease activity into the medium increase. These changes, which are associated with the loss from the hybrid cells of both copies of the chromosome 4 derived from the parental fibroblast, predict the reacquisition of malignancy when the cells are inoculated into mice. It is possible that one gene or set of genes located on chromosome 4 determines both the execution of the fibroblast differentiation programme and the suppression of malignancy.


2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


2014 ◽  
Vol 16 (3) ◽  
pp. R131 ◽  
Author(s):  
Azza Gramoun ◽  
Lindsey A Crowe ◽  
Lionel Maurizi ◽  
Wolfgang Wirth ◽  
Frank Tobalem ◽  
...  

2010 ◽  
Vol 19 (4) ◽  
pp. 419-429 ◽  
Author(s):  
Po-Wah So ◽  
Tammy Kalber ◽  
David Hunt ◽  
Michael Farquharson ◽  
Alia Al-Ebraheem ◽  
...  

Determination of the dynamics of specific cell populations in vivo is essential for the development of cell-based therapies. For cell tracking by magnetic resonance imaging (MRI), cells need to internalize, or be surface labeled with a MRI contrast agent, such as superparamagnetic iron oxide nanoparticles (SPIOs): SPIOs give rise to signal loss by gradient-echo and T2-weighted MRI techniques. In this study, cancer cells were chemically tagged with biotin and then magnetically labeled with anti-biotin SPIOs. No significant detrimental effects on cell viability or death were observed following cell biotinylation. SPIO-labeled cells exhibited signal loss compared to non-SPIO-labeled cells by MRI in vitro. Consistent with the in vitro MRI data, signal attenuation was observed in vivo from SPIO-labeled cells injected into the muscle of the hind legs, or implanted subcutaneously into the flanks of mice, correlating with iron detection by histochemical and X-ray fluorescence (XRF) methods. To further validate this approach, human mesenchymal stem cells (hMSCs) were also employed. Chemical biotinylation and SPIO labeling of hMSCs were confirmed by fluorescence microscopy and flow cytometry. The procedure did not affect proliferation and multipotentiality, or lead to increased cell death. The SPIO-labeled hMSCs were shown to exhibit MRI signal reduction in vitro and was detectable in an in vivo model. In this study, we demonstrate a rapid, robust, and generic methodology that may be a useful and practical adjuvant to existing methods of cell labeling for in vivo monitoring by MRI. Further, we have shown the first application of XRF to provide iron maps to validate MRI data in SPIO-labeled cell tracking studies.


Sign in / Sign up

Export Citation Format

Share Document