scholarly journals Effect of Seminal Plasma Protein Fractions on Stallion Sperm Cryopreservation

2020 ◽  
Vol 21 (17) ◽  
pp. 6415
Author(s):  
Filipa Bubenickova ◽  
Pavla Postlerova ◽  
Ondrej Simonik ◽  
Jitka Sirohi ◽  
Jiri Sichtar

Seminal plasma (SP) is the natural environment for spermatozoa and contains a number of components, especially proteins important for successful sperm maturation and fertilization. Nevertheless, in standard frozen stallion insemination doses production, SP is completely removed and is replaced by a semen extender. In the present study, we analyzed the effects of the selected seminal plasma protein groups that might play an important role in reducing the detrimental effects on spermatozoa during the cryopreservation process. SP proteins were separated according to their ability to bind to heparin into heparin-binding (Hep+) and heparin-non-binding (Hep−) fractions. The addition of three concentrations—125, 250, and 500 µg/mL—of each protein fraction was tested. After thawing, the following parameters were assessed: sperm motility (by CASA), plasma membrane integrity (PI staining), and acrosomal membrane integrity (PNA staining) using flow cytometry, and capacitation status (anti-phosphotyrosine antibody) using imaging-based flow cytometry. Our results showed that SP protein fractions had a significant effect on the kinematic parameters of spermatozoa and on a proportion of their subpopulations. The 125 µg/mL of Hep+ protein fraction resulted in increased linearity (LIN) and straightness (STR), moreover, with the highest values of sperm velocities (VAP, VSL), also this group contained the highest proportion of the fast sperm subpopulation. In contrast, the highest percentage of slow subpopulation was in the groups with 500 µg/mL of Hep+ fraction and 250 µg/mL of Hep− fraction. Interestingly, acrosomal membrane integrity was also highest in the groups with Hep+ fraction in concentrations of 125 µg/mL. Our results showed that the addition of protein fractions did not significantly affect the plasma membrane integrity and capacitation status of stallion spermatozoa. Moreover, our results confirmed that the effect of SP proteins on the sperm functionality is concentration-dependent, as has been reported for other species. Our study significantly contributes to the lack of studies dealing with possible use of specific stallion SP fractions in the complex puzzle of the improvement of cryopreservation protocols. It is clear that improvement in this field still needs more outputs from future studies, which should be focused on the effect of individual SP proteins on other sperm functional parameters with further implication on the success of artificial insemination in in vivo conditions.

2016 ◽  
Vol 68 (3) ◽  
pp. 620-628 ◽  
Author(s):  
L.S.L.S. Reis ◽  
A.A. Ramos ◽  
A.S. Camargos ◽  
E. Oba

ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion), scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot) and evaluated over 280 days. Semen samples, collected every 56 days by electroejaculation, were evaluated soon after collection for motility, vigor and wave motion under an optical microscope. Sperm membrane integrity, acrosomal integrity, and mitochondrial activity were evaluated under a fluorescent microscope using probe association (FITC-PSA, PI, JC-1, H342). The sperm were classified into eight integrity categories depending on whether they exhibited intact or damaged membranes, an intact or damaged acrosomal membrane, and high or low mitochondrial potential. The results show that bulls have a low amount of sperm with intact membranes at puberty, and the sperm show low motility, vigor, and wave motion; however, in bulls at early sexual maturity, the integrity of the sperm membrane increased significantly. The rate of sperm membrane damage was negatively correlated with motility, vigor, wave motion, and testosterone in the bulls, and a positive correlation existed between sperm plasma membrane integrity and scrotal circumference. The integrity of the acrosomal membrane was not influenced by puberty. During puberty and into early sexual maturity, bulls show low sperm mitochondrial potential, but when bulls reached sexual maturity, high membrane integrity with high mitochondrial potential was evident.


2010 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
F. M. Sevciuc ◽  
C. M. Mendes ◽  
F. R. O. de Barros ◽  
W. B. Feitosa ◽  
R. Simões ◽  
...  

The spermatozoa is an ideal vehicle for genetic modification, production of transgenic animals, as well as a biotechnological tool for sperm-mediated gene transfer. However, in order to achieve successful sperm fertilization and exogenous DNA integration, it is necessary for viable cells to remain intact, allowing the sperm to penetrate the oocyte. Fluorescent probes allow evaluation of morphological and functional characteristics of cells, which can be evaluated separately or simultaneously. Therefore, the aim of this study was to validate the simultaneous evaluation of the integrity of plasma and acrosomal membranes of murine sperm using the probes carboxyfluorescein diacetate (CF) and propidium iodide (PI). In order to validate, a standard curve was performed. Sperm were obtained from epididymis and vas deferens from CD-1 mice (8 to 16 weeks of age). Recovered samples were diluted in PBS and then divided into 2 aliquots: one prepared with fresh semen (FS) and the other submitted to Percoll gradient (45%/90%) followed by flash-freezing in liquid nitrogen and thawing (FTP) to induce acrosome damage. Samples were prepared with the following average of FS:FTP: 100:0 (T100), 50 : 50 (T50), and 0 : 100 (T0). Samples were stained using 2 μL Hoescht 33342 (40 μLmL-1 in Dulbecco’s phosphate buffered saline), 3 μL of PI (0.5 mg mL-1 in PBS), 3 μL of CF (0.46 mg mL-1 in DMSO), and were incubated for 8 min at room temperature. After staining, the samples were placed on a slide, coverslipped, and evaluated immediately by epifluorescent microscopy. The Hoescht, PI, and CF fluorescence was detected using a filter with excitation at 352, 538, and 495 nm and emission at 455, 617, and 517 nm, respectively. Approximately 200 sperm cells per slide were examined and classified based on the fluorescence emitted from each probe. Spermatozoa CF+/IP- were considered as intact membranes, CF+/PI+ as acrosome membrane intact and plasma damaged, CF-/PI+ as damaged membranes, and CF-/PI- as acrosome membrane damaged and plasma intact. Hoeschst was used as positive dye. This experiment was replicated 6 times per group, and for statistical analyses, the data of plasma and acrosomal membrane integrity (dependent variables) in the treatments T0, T50, and T100 (independent variables) were submitted to simple linear regression analysis by STATVIEW software (SAS Institute Inc., Cary, NC, USA). The CFDA/PI probes were suitable for the analysis of acrosomal and membrane status of murine sperm and showed a high determination coefficient to plasma membrane integrity (R2 = 0.81; Y = 0.5412x + 6.375) and acrosome integrity (R2 = 0.85; Y = 0.5653x + 11.653). The described protocol was efficient for the simultaneous evaluation of plasma and acrosomal membrane integrity of murine spermatozoa, proving that CFDA can be employed to access acrosomal integrity as an alternative to FITC-PSA. Financial support: FAPESP.


2014 ◽  
Vol 85 (8) ◽  
pp. 719-728 ◽  
Author(s):  
Fride Berg Standerholen ◽  
Frøydis Deinboll Myromslien ◽  
Elisabeth Kommisrud ◽  
Erik Ropstad ◽  
Karin Elisabeth Waterhouse

2015 ◽  
Vol 27 (1) ◽  
pp. 125
Author(s):  
C. Ramires Neto ◽  
M. M. B. Castro-Chaves ◽  
Y. F. R. Sancler-Silva ◽  
R. C. Uliani ◽  
P. V. L. Oliveira ◽  
...  

Several factors can interfere with sperm cryopreservation resistance, especially the genetic factors and those related to the plasma membrane composition of the sperm and seminal plasma. However, it is still unclear if the same factors that confer freezing resistance will perform the same role during the cooling process. Thus, the aim of this study was to determine the relation between the resistance to freezing and cooling processes in stallions. Two ejaculates from each of 75 stallions were used. All animals showed good quality of fresh semen (total motility higher than 60% and plasma membrane integrity higher than 50%). After collection, the semen was diluted 1 : 1 with commercial skim milk-based extender (Botu-SemenTM, Botupharma, Brazil) and then a part was designed to cooling and the another to freezing. The cooled semen was divided into 2 groups: Group PS, in which the semen was diluted with Botu-SemenTM at a concentration of 50 × 106 sperm mL–1, and Group SPS, which was subjected to a centrifugation at 600 × g for 10 min and resuspended with Botu-SemenTM at 50 × 106 sperm mL–1. Semen samples from both groups were placed in the same cooling passive system for a period of 24 h/5°C. To accomplish the freezing process, the semen sample was subjected to centrifugation at 600 × g for 10 min. The supernatant was discarded, and the pellet was re-suspended in a Botu-CrioTM. The straws were frozen according to the manufacture. The sperm parameters from fresh semen, cooled semen for 24 h with and without seminal plasma, and frozen semen were evaluated for kinetics by computer-assisted semen analysis and for plasma membrane integrity (IMP%) by epi-fluorescence microscopy. The animals were classified in relation to their resistance to cooling and freezing processes as follow: “bad coolers” – reduction in sperm total motility and in plasma membrane integrity higher than 35% after 24 h of cooling in samples with seminal plasma; “good coolers” – reduction in sperm total motility and in plasma membrane integrity lower than 35% after 24 h of cooling in samples with seminal plasma; “bad freezer” – sperm total motility lower than 40% and progressive motility lower than 20% in seminal sample after thawing; “good freezer” – sperm total motility higher than 60% and progressive motility higher than 30% in seminal sample after thawing. The comparison between the resistance to cooling and freezing processes was performed by Fisher's exact test. The level of significance was 5%. No difference (P < 0.05) between the resistance to cooling and freezing processes was observed. The percentage of stallions “good freezer” and “good cooler” was 54%, “good freezer” and “bad cooler” was 22.6%, “bad freezer” and “good cooler” was 12%, and “bad freezer” and “bad cooler” was 10.6%. Within stallions classified as “good freezer” and “bad cooler,” 52.9% also were “good cooler” when the seminal plasma was removed before the cooling process, and 47.1% remained as “bad cooler.” The result of this study demonstrates that there is a strong relation between the resistance to cooling and freezing processes in stallions. In stallions categorized as “bad cooler,” the seminal plasma presents a major influence on the quality and longevity of cooled semen.


2018 ◽  
Vol 26 (3) ◽  
pp. 209 ◽  
Author(s):  
A. Ata ◽  
O. Yildiz-Gulay ◽  
S. Güngör ◽  
A. Balic ◽  
M.S. Gulay

<p>The carob tree (Ceratonia siliqua) grows naturally in the Mediterranean region. The empiric use of carob cures for their aphrodisiac properties is very common in Turkey. Thus, the experiment was conducted to determine the effects of carob bean extracts on some reproductive parameters in male New Zealand White rabbits. During the adaptation period (stage 1), 6-8 mo old rabbits were trained in semen collection for 30 d. At the beginning of the treatment period (stage 2), rabbits were assigned randomly to 2 groups of 8 animals each. For a period of 49 d (1 spermatogenesis duration), one group was treated with a daily oral dose (10 mL) of carob extract and the other group received the corresponding volume of tap water. Semen was collected weekly. Semen samples taken at week 1 and 7 were analysed separately. At the beginning of stage 2, no differences were observed in the volume and pH of the ejaculate, sperm concentration, percentage of motility, percentage of live spermatozoa, percentage of sperm plasma membrane integrity, plasma concentration of testosterone, and seminal plasma protein levels between the control and carob extract treated animals. Similarly, at the end of stage 2, there were no differences in the volume and pH of the ejaculate, motility percentage, the percentage of live spermatozoa, percentage of sperm plasma membrane integrity, and the seminal plasma protein levels between the control and the carob extract treated animals. However, sperm concentration (P&lt;0.05), plasma concentration of testosterone (P&lt;0.05), and percentage of change in spermatozoa concentration (P&lt;0.02) between groups were affected at the end of stage 2. The data suggested that the use of carob cures prepared by boiling carob fruit could have beneficial influences on sperm concentration in rabbits.</p>


Zygote ◽  
2015 ◽  
Vol 24 (4) ◽  
pp. 529-536 ◽  
Author(s):  
Chihiro Kanno ◽  
Sung-Sik Kang ◽  
Yasuyuki Kitade ◽  
Yojiro Yanagawa ◽  
Yoshiyuki Takahashi ◽  
...  

SummaryThe present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen–thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE–PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE–PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE–PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE–PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.


2014 ◽  
Author(s):  
Mello Papa Patricia de ◽  
Carlos Ramires Neto ◽  
Priscilla Nascimento Guasti ◽  
Rosiara Rosaria Dias Maziero ◽  
Yame F R Sancler-Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document