scholarly journals In Vitro-Transcribed mRNA Chimeric Antigen Receptor T Cell (IVT mRNA CAR T) Therapy in Hematologic and Solid Tumor Management: A Preclinical Update

2020 ◽  
Vol 21 (18) ◽  
pp. 6514
Author(s):  
Thangavelu Soundara Rajan ◽  
Agnese Gugliandolo ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Adoptive T cell immunotherapy has received considerable interest in the treatment of cancer. In recent years, chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising therapy in cancer treatment. In CAR T therapy, T cells from the patients are collected, reprogrammed genetically against tumor antigens, and reintroduced into the patients to trigger an immense immune response against cancer cells. CAR T therapy is successful in hematologic malignancies; however, in solid tumors, CAR T therapy faces multiple challenges, including the on-target off-tumor phenomenon, as most of the tumor-associated antigens are expressed in normal cells as well. Consequently, a transient in vitro-transcribed anti-mRNA-based CAR T cell (IVT mRNA CAR T) approach has been investigated to produce controlled cytotoxicity for a limited duration to avoid any undesirable effects in patients. In vitro and in vivo studies demonstrated the therapeutic ability of mRNA-engineered T cells in solid tumors, including melanoma, neuroblastoma and ovarian cancer; however, very few clinical trials are registered. In the present review, we discuss the effect of IVT mRNA CAR T therapy in preclinical studies related to hematologic malignancies and solid tumor management. In addition, we discuss the clinical trial studies based on IVT mRNA CAR T therapy in cancer.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fengzhen Mo ◽  
Siliang Duan ◽  
Xiaobing Jiang ◽  
Xiaomei Yang ◽  
Xiaoqiong Hou ◽  
...  

AbstractChimeric antigen receptor-based T-cell immunotherapy is a promising strategy for treatment of hematological malignant tumors; however, its efficacy towards solid cancer remains challenging. We therefore focused on developing nanobody-based CAR-T cells that treat the solid tumor. CD105 expression is upregulated on neoangiogenic endothelial and cancer cells. CD105 has been developed as a drug target. Here we show the generation of a CD105-specific nanobody, an anti-human CD105 CAR-T cells, by inserting the sequences for anti-CD105 nanobody-linked standard cassette genes into AAVS1 site using CRISPR/Cas9 technology. Co-culture with CD105+ target cells led to the activation of anti-CD105 CAR-T cells that displayed the typically activated cytotoxic T-cell characters, ability to proliferate, the production of pro-inflammatory cytokines, and the specific killing efficacy against CD105+ target cells in vitro. The in vivo treatment with anti-CD105 CAR-T cells significantly inhibited the growth of implanted CD105+ tumors, reduced tumor weight, and prolonged the survival time of tumor-bearing NOD/SCID mice. Nanobody-based CAR-T cells can therefore function as an antitumor agent in human tumor xenograft models. Our findings determined that the strategy of nanobody-based CAR-T cells engineered by CRISPR/Cas9 system has a certain potential to treat solid tumor through targeting CD105 antigen.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 191 ◽  
Author(s):  
Benjamin Heyman ◽  
Yiping Yang

Chimeric antigen receptor T cells (CAR T Cells) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early phase clinical trials in patients with solid tumors have demonstrated them to be feasible, but unfortunately has yielded limited efficacy for various cancer types. In this article we will review the background on CAR T cells for the treatment of solid tumors, focusing on the unique obstacles that solid tumors present for the development of adoptive T cell therapy, and the novel approaches currently under development to overcome these hurdles.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A140-A141
Author(s):  
David Mai ◽  
Omar Johnson ◽  
Carl June

BackgroundCAR-T cell therapy has demonstrated remarkable success in hematological malignancies but displays limited efficacy in solid tumors, which comprise most cancer cases. Recent studies suggest that CAR-T cell failure via T cell exhaustion is characterized by decreased surface CAR expression, cytotoxicity, and Th1 cytokine production, leading to reduced antitumor functionality.1 2 3 To address these issues, studies have turned to genetically knocking out or overexpressing targets associated with an exhaustion or effector phenotype, such as PD-1 knockout (KO) and c-Jun overexpression, among other candidates that are typically receptors or transcription factors.4 5 6 However, there are other underexplored factors that mediate various aspects of immune regulation. While genome-wide CRISPR screens may discover such factors, they are unlikely to reveal phenotypes for genes whose function is partially redundant, therefore promising candidates may be missed. Such candidates include post-transcriptional regulators (PTRs) that coordinate immune responses, which are less well-studied in the context of CAR-T cell function. We hypothesized that KO of these PTRs may increase CAR-T cell cytokine activity, phenotype, and persistence, potentially under long-term or exhaustion-inducing conditions, leading to increased tumor control. Ultimately, disruption of negative immune regulators could produce CAR-T cells with enhanced activity and persistence, narrowing the gap between efficacy in hematological and solid tumors.MethodsTo explore whether the disruption of two target PTRs improves solid tumor efficacy, we used CRISPR-Cas9 to genetically delete one or both PTRs in mesothelin-targeting human CAR-T cells and assayed their function in vitro and in vivo in NSG mice.ResultsWe show successful genetic deletion of these genes in post-thymic human T cells and that their disruption does not affect primary expansion (figure 1) or transduction efficiency (figure 2). These KO CAR-T cells display increased expression of co-stimulatory receptors and various cytokines (figure 3). While KO CAR-T cells are functionally similar to WT CAR-T cells in in vitro assays (figure 4), KO CAR-T cells demonstrate superior activity in vivo and can clear large, established tumors compared to WT CAR-T cells at low dose (figure 5).Abstract 131 Figure 1Expansion kinetics of KO CAR-T cellsAbstract 131 Figure 2Transduction efficiency and baseline phenotype of KO CAR-T cellsAbstract 131 Figure 3Costimulatory receptor and cytokine expression of KO CAR-T cellsAbstract 131 Figure 4In vitro cytotoxicity of KO CAR-T cellsAbstract 131 Figure 5In vivo activity of KO CAR-T cellsConclusionsThese results indicate that KO of our target PTRs may improve the potency of CAR-T cells in solid tumors and may have important implications on the development of effective solid-tumor cell therapies.ReferencesJE Wherry and M Kurachi, Molecular and cellular insights into T cell exhaustion, Nature Reviews Immunology 2015;15:486–499.EW Weber, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 2021;372:6537.S Kuramitsu et al. Induction of T cell dysfunction and NK-like T cell differentiation in vitro and in patients after CAR T cell treatment. Cell, in revision.BD Choi et al, CRISPR-Cas9 disruption of PD-1 enhances activity of university EGFRvIII CAR T cells in a preclinical model of human glioblastoma. Journal for ImmunoTherapy of Cancer 2019;7:304.RC Lynn et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 2019;576:293–300.LJ Rupp et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports 2017;7:737.


2020 ◽  
Author(s):  
Le Qin ◽  
Ruocong Zhao ◽  
Dongmei Chen ◽  
Xinru Wei ◽  
Qiting Wu ◽  
...  

Abstract Background: Chimeric antigen receptor T cells (CAR-T cells) therapy has been well recognized for treating B cell-derived malignancy. However, the efficacy of CAR-T cells against solid tumors remains dissatisfactory, partially due to the heterogeneity of solid tumors and T cell exhaustion in tumor microenvironment. PD-L1 is up-regulated in multiple solid tumors, resulting in T cell exhaustion upon binding to its receptor PD-1. Methods: Here, we designed a dominant-negative form of PD-1 , dPD1z, a vector containing the extracellular and transmembrane regions of human PD-1, and a CAR vector against PD-L1, CARPD-L1z, a vector employs a high-affinity single-chain variable fragment (scFv) against human PD-L1. These two vectors shared the same intracellular structure, including 4-1BB and TLR2 co-stimulatory domains, and the CD3ζ signaling domain. Results: dPD1z T and CARPD-L1z T cells efficiently lysed PD-L1 + tumor cells and had enhanced cytokine secretion in vitro and suppressed the growth of non-small cell lung cancer (NSCLC), gastric cancer and hepatoma carcinoma in patient-derived xenograft (PDX). However, the combination of anti-mesothelin CAR-T cells (CARMSLNz T) with dPD1z T or CARPD-L1z T cells did not repress tumor growth synergistically in PDX, as CARMSLNz T cells upregulated PD-L1 expression upon activation and were subsequently attacked by dPD1z T or CARPD-L1z T cells. Conclusions: In conclusion, we demonstrate CAR-T cells targeting PD-L1 were effective for suppressing the growth of multiple types of solid tumors in PDX models though their safety needs to be carefully examined.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Qibin Liao ◽  
Huan He ◽  
Yunyu Mao ◽  
Xiangqing Ding ◽  
Xiaoyan Zhang ◽  
...  

Abstract Chimeric antigen receptor-modified T cells (CAR-T cells) have shown good effects in the treatment of hematologic cancers; however, they may cause on-target off-tumor toxicity because of minimal expression of tumor-associated antigens (TAAs) on normal tissues, particularly in the context of treating solid tumors. Hypoxia is a common hallmark of solid tumors because of the Warburg effect. To minimize side effects, we designed a hypoxia-inducible CAR (HiCAR), which is driven by a hypoxia response element (HRE), and consists of a conventional CAR and an oxygen-dependent degradation domain (ODD) that is actively degraded under normoxia but stabilized under hypoxia. HiCAR-T cells showed enhanced cytotoxicity against tumor cells under hypoxia compared to normoxia in vitro and antitumor efficacy comparable to that of conventional CAR-T cells in vivo. Overall, our study demonstrates the potential of the HiCAR for improving the safety of CAR-T cells to promote the clinical application of CAR-T immunotherapy.


Author(s):  
Zhixiong Wang ◽  
Qian Liu ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy still faces the challenge of immunosuppression when treating solid tumors. TGF-β is one of the critical factors in the tumor microenvironment to help tumors escape surveillance by the immune system. Here we tried using the combination of a small molecule inhibitor of TGF-β receptor I, Galunisertib, and CAR T cells to explore whether Galunisertib could enhance CAR T cell function against solid tumor cells. In vitro experiments showed Galunisertib could significantly enhance the specific cytotoxicity of both CD133- and HER2-specific CAR T cells. However, Galunisertib had no direct killing effect on target cells. Galunisertib significantly increased the cytokine secretion of CAR T cells and T cells that do not express CAR (Nontransfected T cells). Galunisertib did not affect the proliferation of T cells, the antigen expression on target cells and CD69 on CAR T cells. We found that TGF-β was secreted by T cells themselves upon activation, and Galunisertib could reduce TGF-β signaling in CAR T cells. Our findings can provide the basis for further preclinical and clinical studies of the combination of Galunisertib and CAR T cells in the treatment of solid tumors.


2019 ◽  
Author(s):  
Hongxing Sun ◽  
Shan He ◽  
Lijun Meng ◽  
Ying Wang ◽  
Hanghang Zhang ◽  
...  

ABSTRACTIntegrin αEβ7 (CD103) can interact with E-cadherin and promote T cell retention in epithelial tissue. However, whether the expression of CD103 on chimeric antigen receptor (CAR)-T cells may augment T cell anti-tumor activity remains unknown. Using a preclinical model, we demonstrate that CD103 engineering of human CAR-T cells significantly improves their therapeutic effects on eliminating pre-established E-cadherin expressing tumor cells in immune deficient NOD.scid.Il2Rγcnull (NSG) mice. Human T cells that were engineered with CAR containing 4-1BB and CD3zeta intracellular signaling domains (named BBz) expressed reduced level of CD103 in mice model. Ex vivo assays confirmed the effect of 4-1BB on repressing CD103 expression in CAR-T cells. On the other hand, we generated CD103 expressing CAR-T cells by introducing the αE gene into the CAR structure (named CD103-BBz CAR-T cells). As compared to BBz CAR-T cells, CD103-BBz CAR-T cells produced higher levels of IL-2 and underwent greater expansion in cultures and acquired greater capacity to control the growth and metastasis of E-cadherin expressing lymphoma cells in NSG mice. This effect of CD103-BBz CAR-T cells was associated with their increased capacity to infiltrate into the tumor and persist in vivo, leading to significantly improved overall survival of lymphoma mice. Our findings suggest that engineering tumor-reactive T cells with CD103 may represent a novel strategy to improve adoptive T cells anti-tumor efficacy, and this strategy may have broad implication in the epithelial solid tumor treatment.HighlightsCAR-T cells with 4-1BB costimulatory domain express reduced level of CD1034-1BB signaling antagonist TGF-β1 induced CD103 expressionEctopically expression of CD103 on CAR-T cells enhanced their anti-E-cadherin positive tumor capacityGraphical Abstract:Graphic Summary: The co-stimulatory molecule 4-1BB within the CAR protein potently suppresses CD103 expression. Engineering CAR-T cells with CD103 significantly enhances their capacity to proliferate and infiltrate into the solid tumor, leading to augmented anti-tumor immunity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5019-5019
Author(s):  
Kunming Qi ◽  
Hai Cheng ◽  
Jiang Cao ◽  
Wei Chen ◽  
Jianlin Qiao ◽  
...  

Abstract Chimeric Antigen Receptor T cell( CAR-T) is an effective treatment for refractory recurrent hematologic malignancies nowdays. However, CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines, is the most common type of toxicity, including fever, hyoxemia, pain and so on. In our study, we found 6 cases abnormal coagulation function which was not very common complication after CAR-T infusion. 4 cases relapsed/refractory acute B lymphoblastic leukemia(B-ALL), including 2 female 53 and 45 years old, 2 male 20 and 6 years old. 1 case multiple myeloma(MM), female 65 years old and 1 case relapsed/refractory diffuse large B-cell lymphoma (DLBCL), male 17 years old. After conditioning chemotherapy with fludarabine and cyclophosphamide, CAR-T cells were infused into patients. In these cases, female 65 years old B-ALL patient had the most severe cytokine release reactions, multiple organ function damage, and abnormal coagulation function that prothrombin time (PT) and activated partial thromboplastin time (APTT) were prolonged and reached a peak (Too long to detect) on the 14th day after CAR-T infusion, while fibrinogen (FIB) was reduce d (peak on the 14 day, 0.328g/L) and D-Dimer, fibrinogen degradation products (FDP) significantly increased (peak on the 12th day, 28.7ug/mL and more than 10mg/L respectively). After positive hemostasis and other treatments with amperenic acid, vitamin K1 and so on, the level of PT, APTT, FIB, etc were returned to normal on the 19thday. The other 5 patients went through the same process, only slightly. Patients with severe abnormal coagulation function were prone to bleed and even life-threatening, and giving active treatment, finally they all recovered. For the first time, we reported the abnormal coagulation function after CAR-T infusion in hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document