human tumor xenograft
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 4)

H-INDEX

27
(FIVE YEARS 0)

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A426-A426
Author(s):  
Samuel Klempner ◽  
John Strickler ◽  
Lindsey Gourley ◽  
Celine Jacquemont ◽  
Vinona Bhatia ◽  
...  

BackgroundSBT6050 is a novel therapeutic comprising a selective small molecule toll-like receptor 8 (TLR8) agonist linked to the HER2-directed monoclonal antibody pertuzumab, allowing for combination with trastuzumab-based agents and regimens. SBT6050 is designed to activate myeloid cells in tumors expressing moderate to high levels of HER2. TLR8 agonism directly activates myeloid cells, including macrophages and dendritic cells (DCs), and secondarily activates NK and T cells, inducing a broad spectrum of anti-tumor immune mechanisms. SBT6050 is currently being tested as a single agent and in combination with checkpoint inhibitors (NCT04460456). Initial results show early evidence of anti-tumor effects, activation of myeloid and NK/T cells, and a safety profile consistent with an immune activator that is generally non-overlapping with that of T-DXd or tucatinib-based regimens.A strong scientific rationale supports the combination of SBT6050 with T-DXd and SBT6050 with trastuzumab and tucatinib ± capecitabine. Both treatment regimens drive tumor cell death and release of tumor neoantigens. SBT6050 can enhance tumor neoantigen presentation and subsequent activation of T cell responses through its direct activation of DCs. SBT6050 combined with T-DXd or trastuzumab and tucatinib ± capecitabine is postulated to drive increased anti-tumor T cell responses. In addition, T-DXd and trastuzumab support antibody-dependent cell mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) and SBT6050 can enhance both functions. SBT6050 activates myeloid cells to secrete cytokines that amplify ADCC by NK cells. Additionally, SBT6050 activation downmodulates SIRPα on the surface of myeloid cells which can increase ADCP through attenuation of the CD47-SIRPα interaction. Consistent with this mechanism of action, in preclinical studies in mice, the combination of trastuzumab and a mouse surrogate of SBT6050 led to enhanced activity in the HER2-positive NCI-N87 human tumor xenograft model compared to either agent alone.MethodsProtocol SBT6050-201 is a phase 1/2, open-label, dose-escalation and expansion study evaluating SBT6050 in combination with either T-DXd (Part 1) or tucatinib and trastuzumab +/- capecitabine (Part 2). Eligible patients are at least 18 years old, have HER2-positive metastatic breast cancer, gastric/GEJ cancer, colorectal cancer, or HER2-expressing or amplified NSCLC, and have received at least one prior therapy for metastatic disease. Patients will receive SBT6050 subcutaneously q3wk starting at a dose with demonstrated pharmacodynamic activity in phase 1. Pharmacodynamic markers of myeloid and NK/T cell activation will be assessed in peripheral blood and on-treatment tumor biopsies. Circulating tumor DNA will be evaluated as an exploratory assessment.Ethics ApprovalThis clinical study has not yet obtained ethics approval or started enrollment. All participants will be required to give informed consent before taking part.



2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingdong Zhao ◽  
Ming-Chung Li ◽  
Mariam M. Konaté ◽  
Li Chen ◽  
Biswajit Das ◽  
...  

Abstract Background In order to correctly decode phenotypic information from RNA-sequencing (RNA-seq) data, careful selection of the RNA-seq quantification measure is critical for inter-sample comparisons and for downstream analyses, such as differential gene expression between two or more conditions. Several methods have been proposed and continue to be used. However, a consensus has not been reached regarding the best gene expression quantification method for RNA-seq data analysis. Methods In the present study, we used replicate samples from each of 20 patient-derived xenograft (PDX) models spanning 15 tumor types, for a total of 61 human tumor xenograft samples available through the NCI patient-derived model repository (PDMR). We compared the reproducibility across replicate samples based on TPM (transcripts per million), FPKM (fragments per kilobase of transcript per million fragments mapped), and normalized counts using coefficient of variation, intraclass correlation coefficient, and cluster analysis. Results Our results revealed that hierarchical clustering on normalized count data tended to group replicate samples from the same PDX model together more accurately than TPM and FPKM data. Furthermore, normalized count data were observed to have the lowest median coefficient of variation (CV), and highest intraclass correlation (ICC) values across all replicate samples from the same model and for the same gene across all PDX models compared to TPM and FPKM data. Conclusion We provided compelling evidence for a preferred quantification measure to conduct downstream analyses of PDX RNA-seq data. To our knowledge, this is the first comparative study of RNA-seq data quantification measures conducted on PDX models, which are known to be inherently more variable than cell line models. Our findings are consistent with what others have shown for human tumors and cell lines and add further support to the thesis that normalized counts are the best choice for the analysis of RNA-seq data across samples.



2021 ◽  
Vol 22 (8) ◽  
pp. 4102
Author(s):  
Xia Zhang ◽  
Rikiya Taoka ◽  
Dage Liu ◽  
Yuki Matsuoka ◽  
Yoichiro Tohi ◽  
...  

RRM1—an important DNA replication/repair enzyme—is the primary molecular gemcitabine (GEM) target. High RRM1-expression associates with gemcitabine-resistance in various cancers and RRM1 inhibition may provide novel cancer treatment approaches. Our study elucidates how RRM1 inhibition affects cancer cell proliferation and influences gemcitabine-resistant bladder cancer cells. Of nine bladder cancer cell lines investigated, two RRM1 highly expressed cells, 253J and RT112, were selected for further experimentation. An RRM1-targeting shRNA was cloned into adenoviral vector, Ad-shRRM1. Gene and protein expression were investigated using real-time PCR and western blotting. Cell proliferation rate and chemotherapeutic sensitivity to GEM were assessed by MTT assay. A human tumor xenograft model was prepared by implanting RRM1 highly expressed tumors, derived from RT112 cells, in nude mice. Infection with Ad-shRRM1 effectively downregulated RRM1 expression, significantly inhibiting cell growth in both RRM1 highly expressed tumor cells. In vivo, Ad-shRRM1 treatment had pronounced antitumor effects against RRM1 highly expressed tumor xenografts (p < 0.05). Moreover, combination of Ad-shRRM1 and GEM inhibited cell proliferation in both cell lines significantly more than either treatment individually. Cancer gene therapy using anti-RRM1 shRNA has pronounced antitumor effects against RRM1 highly expressed tumors, and RRM1 inhibition specifically increases bladder cancer cell GEM-sensitivity. Ad-shRRM1/GEM combination therapy may offer new treatment options for patients with GEM-resistant bladder tumors.



2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fengzhen Mo ◽  
Siliang Duan ◽  
Xiaobing Jiang ◽  
Xiaomei Yang ◽  
Xiaoqiong Hou ◽  
...  

AbstractChimeric antigen receptor-based T-cell immunotherapy is a promising strategy for treatment of hematological malignant tumors; however, its efficacy towards solid cancer remains challenging. We therefore focused on developing nanobody-based CAR-T cells that treat the solid tumor. CD105 expression is upregulated on neoangiogenic endothelial and cancer cells. CD105 has been developed as a drug target. Here we show the generation of a CD105-specific nanobody, an anti-human CD105 CAR-T cells, by inserting the sequences for anti-CD105 nanobody-linked standard cassette genes into AAVS1 site using CRISPR/Cas9 technology. Co-culture with CD105+ target cells led to the activation of anti-CD105 CAR-T cells that displayed the typically activated cytotoxic T-cell characters, ability to proliferate, the production of pro-inflammatory cytokines, and the specific killing efficacy against CD105+ target cells in vitro. The in vivo treatment with anti-CD105 CAR-T cells significantly inhibited the growth of implanted CD105+ tumors, reduced tumor weight, and prolonged the survival time of tumor-bearing NOD/SCID mice. Nanobody-based CAR-T cells can therefore function as an antitumor agent in human tumor xenograft models. Our findings determined that the strategy of nanobody-based CAR-T cells engineered by CRISPR/Cas9 system has a certain potential to treat solid tumor through targeting CD105 antigen.



2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Tracy C. Kuo ◽  
Amy Chen ◽  
Ons Harrabi ◽  
Jonathan T. Sockolosky ◽  
Anli Zhang ◽  
...  

Abstract Background Signal regulatory protein α (SIRPα) is a myeloid-lineage inhibitory receptor that restricts innate immunity through engagement of its cell surface ligand CD47. Blockade of the CD47–SIRPα interaction synergizes with tumor-specific antibodies and T-cell checkpoint inhibitors by promoting myeloid-mediated antitumor functions leading to the induction of adaptive immunity. Inhibition of the CD47–SIRPα interaction has focused predominantly on targeting CD47, which is expressed ubiquitously and contributes to the accelerated blood clearance of anti-CD47 therapeutics. Targeting SIRPα, which is myeloid-restricted, may provide a differential pharmacokinetic, safety, and efficacy profile; however, SIRPα polymorphisms and lack of pan-allelic and species cross-reactive agents have limited the clinical translation of antibodies against SIRPα. Here, we report the development of humanized AB21 (hAB21), a pan-allelic anti-SIRPα antibody that binds human, cynomolgus monkey, and mouse SIRPα alleles with high affinity and blocks the interaction with CD47. Methods Human macrophages derived from donors with various SIRPα v1 and v2 allelic status were used to assess the ability of hAB21 to enhance phagocytosis. HAB21_IgG subclasses were evaluated for targeted depletion of peripheral blood mononuclear cells, phagocytosis and in vivo efficacy in xenograft models. Combination therapy with anti-PD1/anti-PD-L1 in several syngeneic models was performed. Immunophenotyping of tissues from MC38 tumor-bearing mice treated with AB21 and anti-PD-1 was evaluated. PK, PD and tolerability of hAB21 were evaluated in cynomolgus monkeys. Results SIRPα blockade with hAB21 promoted macrophage-mediated antibody-dependent phagocytosis of tumor cells in vitro and improved responses to rituximab in the Raji human tumor xenograft mouse model. Combined with PD-1/PD-L1 blockade, AB21 improved response rates by facilitating monocyte activation, dendritic cell activation, and T cell effector functions resulting in long term, durable antitumor immunity. In cynomolgus monkeys, hAB21 has a half-life of 5.3 days at 10 mg/kg and complete target occupancy with no hematological toxicity or adverse findings at doses up to 30 mg/kg. Conclusions The in vitro and in vivo antitumor activity of hAB21 broadly recapitulates that of CD47 targeted therapies despite differences in ligand expression, binding partners, and function, validating the CD47–SIRPα axis as a fundamental myeloid checkpoint pathway and its blockade as promising therapeutic intervention for treatment of human malignancies.



Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Eliana B. Gomez ◽  
Wenjuan Wu ◽  
Jennifer R Stephens ◽  
Mary S. Rosendahl ◽  
Barbara J. Brandhuber

Introduction: Bruton's Tyrosine Kinase (BTK) is an essential component of normal and malignant B-cell receptor signaling. Covalent BTK inhibitors have transformed the treatment of B-cell malignancies. Despite the marked efficacy of covalent BTKi, treatment failure can occur through the development of resistance and discontinuation for adverse events. The activity of these covalent BTK inhibitors are markedly reduced or absent in the presence of BTK cysteine binding site (C481) mutations. Moreover, these agents share pharmacologic liabilities (e.g. low oral bioavailability, short half-life) that may sometimes lead to suboptimal BTK target coverage, for example in rapidly proliferating tumors with high BTK protein turnover, ultimately manifesting as acquired resistance for some patients. To address these limitations, LOXO-305, a highly selective, non-covalent BTKi that inhibits both WT and C481-mutated BTK with equal low nM potency was developed. Proof-of-concept Phase I results demonstrated LOXO-305's anti-tumor activity across patients with heavily pretreated B-cell malignancies (Mato et al. ASH 2019). We previously showed pre-clinical data demonstrating that LOXO-305 potently inhibited wild-type (WT) BTK and different variants of the BTK mutation C481 with nanomolar potency and caused regression in BTK-dependent lymphoma mouse xenograft models (Brandhuber et al. SOHO 2018, and Gomez et al. ASH 2019). Here we describe the activity of LOXO-305 alone or in combination with venetoclax (BCL-2 inhibitor), in TMD8 BTK WT and TMD8 BTK C481S human tumor xenograft models of diffuse large B lymphoma and a REC-1 human tumor xenograft model of mantle cell lymphoma in mice. We also report the activity of LOXO-305 alone and in combination with R-CHOP (rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone) or obinutuzumab (anti-CD20 antibody), in the TMD8 xenograft tumor model. Methods: In all studies, tested articles were administered alone and in combination, following different dosing regimens. Table 1 shows the tested compound(s), dosing frequency, cell line used, disease, BTK status (WT or C481S), and mouse strain used, for each study presented in this abstract. Human TMD8 BTK WT, TMD8 BTK C481S or REC-1 cells were injected subcutaneously in the right flank of mice. When tumors reached a mean volume between 150 mm3 and 400 mm3, mice were randomized based on their tumor volumes. Mice were next dosed for 17 to 23 days depending on the study design. The potencies of the compounds stand-alone or in combination on the inhibition of the tumor growth were assessed based on the tumor volume changes and weights after collection at the end of the study. Additionally, in the TMD8 studies, the plasma concentrations of tested articles were measured at multiple time points after the last dose. Results: All treatments were well tolerated without any significant body weight loss or clinical signs being observed on the mice. LOXO-305 potently inhibited the growth of BTK WT and BTK C481S driven xenograft tumors. In all combinations tested, significantly greater tumor growth inhibition was observed in groups where LOXO-305 was co-administered with clinically approved agents. Conclusion: These data suggest that the co-administration of LOXO-305 with venetoclax, R-CHOP or obinutuzumab could have an increased benefit for patients with B-cell malignancies compared to stand-alone treatments and warrants further investigation. Disclosures Gomez: Loxo Oncology, Inc, a wholly owned subsidiary of Eli Lilly and Company: Current Employment, Divested equity in a private or publicly-traded company in the past 24 months. Wu:Eli Lilly and Company: Current Employment, Current equity holder in publicly-traded company. Stephens:Eli Lilly and Company: Current Employment, Current equity holder in publicly-traded company. Rosendahl:Loxo Oncology, Inc, a wholly owned subsidiary of Eli Lilly and Company: Current Employment, Divested equity in a private or publicly-traded company in the past 24 months. Brandhuber:Loxo Oncology, Inc, a wholly owned subsidiary of Eli Lilly and Company: Current Employment, Divested equity in a private or publicly-traded company in the past 24 months.



2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Qibin Liao ◽  
Yunyu Mao ◽  
Huan He ◽  
Xiangqing Ding ◽  
Xiaoyan Zhang ◽  
...  

Abstract Background On-target off-tumor toxicity impedes the clinical application of chimeric antigen receptor-modified T cells (CAR-T cells) in the treatment of solid tumors. Previous reports proved that the combinatorial antigen recognition strategy could improve the safety profile of CAR-T cells by targeting two different tumor-associated antigens (TAAs), one as a CAR-T targeted antigen and the other as a chimeric costimulatory receptor (CCR) ligand. The programmed death-ligand 1 (PD-L1, also known as B7-H1) is preferentially overexpressed on multiple tumors, it will be highly interesting to explore the potential of PD-L1 as a universal target for designing CCR. Methods A novel dual-targeted CAR, which is composed of first-generation CD19/HER2 CAR with CD3ζ signaling domain and PD-L1 CCR containing the CD28 costimulatory domain, was constructed and delivered into T cells by pseudotyped lentivirus. The cytokine release, cytotoxicity and proliferation of dual-targeted CAR-T cells were tested in vitro, and their safety and therapeutic efficacy were evaluated using a human tumor xenograft mouse model in vivo. Results The dual-targeted CAR-T cells exerted a similar cytotoxic activity against CD19/HER2+ tumor cells with or without PD-L1 in vitro, however, enhanced cytokine releases and improved proliferative capacity were only observed in the presence of both CD19/HER2 and PD-L1. Importantly, the dual-targeted CAR-T cells displayed no cytotoxicity against PD-L1+ cells alone in the absence of tumor antigen CD19/HER2. In addition, the dual-targeted CAR-T cells preferably destroyed tumor xenografts bearing both CD19/HER2 and PD-L1, but spared only antigen-positive tumor xenografts without PD-L1 in vivo. Furthermore, PD-L1 CCR also improved the antitumor efficacy of the low-affinity HER2 CAR-T cells against PD-L1+ tumors expressing high levels of HER2. Conclusion Our observations demonstrated that PD-L1 could be used as a universal target antigen for designing CCR, and the dual-targeted CAR-T cells equipped with PD-L1 CCR could be used to reduce the risk of on-target off-tumor toxicity while retaining their potent antitumor efficacy in the treatment of PD-L1+ solid tumors.



2020 ◽  
Vol 8 (2) ◽  
pp. e001128
Author(s):  
Diana Canals Hernaez ◽  
Michael R Hughes ◽  
Pamela Dean ◽  
Peter Bergqvist ◽  
Ismael Samudio ◽  
...  

BackgroundThe success of new targeted cancer therapies has been dependent on the identification of tumor-specific antigens. Podocalyxin (Podxl) is upregulated on tumors with high metastatic index and its presence is associated with poor outcome, thus emerging as an important prognostic and theragnostic marker in several human cancers. Moreover, in human tumor xenograft models, Podxl expression promotes tumor growth and metastasis. Although a promising target for immunotherapy, the expression of Podxl on normal vascular endothelia and kidney podocytes could hamper efforts to therapeutically target this molecule. Since pathways regulating post-translational modifications are frequently perturbed in cancer cells, we sought to produce novel anti-Podxl antibodies (Abs) that selectively recognize tumor-restricted glycoepitopes on the extracellular mucin domain of Podxl.MethodsSplenic B cells were isolated from rabbits immunized with a Podxl-expressing human tumor cell line. Abs from these B cells were screened for potent reactivity to Podxl+ neoplastic cell lines but not Podxl+ primary endothelial cells. Transcripts encoding heavy and light chain variable regions from promising B cells were cloned and expressed as recombinant proteins. Tumor specificity was assessed using primary normal tissue and an ovarian cancer tissue microarray (TMA). Mapping of the tumor-restricted epitope was performed using enzyme-treated human tumor cell lines and a glycan array.ResultsOne mAb (PODO447) showed strong reactivity with a variety of Podxl+ tumor cell lines but not with normal primary human tissue including Podxl+ kidney podocytes and most vascular endothelia. Screening of an ovarian carcinoma TMA (219 cases) revealed PODO447 reactivity with the majority of tumors, including 65% of the high-grade serous histotype. Subsequent biochemical analyses determined that PODO447 reacts with a highly unusual terminal N-acetylgalactosamine beta-1 (GalNAcβ1) motif predominantly found on the Podxl protein core. Finally, Ab–drug conjugates showed specific efficacy in killing tumor cells in vitro.ConclusionsWe have generated a novel and exquisitely tumor-restricted mAb, PODO447, that recognizes a glycoepitope on Podxl expressed at high levels by a variety of tumors including the majority of life-threatening high-grade serous ovarian tumors. Thus, tumor-restricted PODO447 exhibits the appropriate specificity for further development as a targeted immunotherapy.



2020 ◽  
Author(s):  
Qibin Liao ◽  
Yunyu Mao ◽  
Huan He ◽  
Xiangqing Ding ◽  
Xiaoyan Zhang ◽  
...  

Abstract Background: On-target off-tumor toxicity impedes the clinical application of chimeric antigen receptor-modified T cells (CAR-T cells) in the treatment of solid tumors. Previous reports proved that the combinatorial antigen recognition strategy could improve the safety profile of CAR-T cells by targeting two different tumor-associated antigens (TAAs), one as a CAR-T targeted antigen and the other as a chimeric costimulatory receptor (CCR) ligand. The programmed death-ligand 1 (PD-L1, also known as B7-H1) is preferentially overexpressed on multiple tumors, it will be highly interesting to explore the potential of PD-L1 as a universal target for designing CCR.Methods: A novel dual-targeted CAR, which is composed of first-generation CD19/HER2 CAR with CD3ζ signaling domain and PD-L1 CCR containing the CD28 costimulatory domain, was constructed and delivered into T cells by pseudotyped lentivirus. The cytokine release, cytotoxicity and proliferation of dual-targeted CAR-T cells were tested in vitro, and their safety and therapeutic efficacy were evaluated using a human tumor xenograft mouse model in vivo.Results: The dual-targeted CAR-T cells exerted a similar cytotoxic activity against CD19/HER2+ tumor cells with or without PD-L1 in vitro, however, enhanced cytokine releases and improved proliferative capacity were only observed in the presence of both CD19/HER2 and PD-L1. Importantly, the dual-targeted CAR-T cells displayed no cytotoxicity against PD-L1+ cells alone in the absence of tumor antigen CD19/HER2. In addition, the dual-targeted CAR-T cells preferably destroyed tumor xenografts bearing both CD19/HER2 and PD-L1, but spared only antigen-positive tumor xenografts without PD-L1 in vivo. Furthermore, PD-L1 CCR also improved the antitumor efficacy of the low-affinity HER2 CAR-T cells against PD-L1+ tumors expressing high levels of HER2.Conclusion: Our observations demonstrated that PD-L1 could be used as a universal target antigen for designing CCR, and the dual-targeted CAR-T cells equipped with PD-L1 CCR could be used to reduce the risk of on-target off-tumor toxicity while retaining their potent antitumor efficacy in the treatment of PD-L1+ solid tumors.



Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3028
Author(s):  
Joana Schröder ◽  
Udo Schumacher ◽  
Lukas Clemens Böckelmann

Thioredoxin interacting protein (TXNIP) is a metabolic protein critically involved in redox homeostasis and has been proposed as a tumor suppressor gene in a variety of malignancies. Accordingly, TXNIP is downregulated in breast, bladder, and gastric cancer and in tumor transplant models TXNIP overexpression inhibits growth and metastasis. As TXNIP protein expression has only been investigated in few malignancies, we employed immunohistochemical detection in a large multi-tumor tissue microarray consisting of 2,824 samples from 94 different tumor entities. In general, TXNIP protein was present only in a small proportion of primary tumor samples and in these cases was differently expressed depending on tumor stage and subtype (e.g., renal cell carcinoma, thyroid cancer, breast cancer, and ductal pancreatic cancer). Further, TXNIP protein expression was determined in primary mouse xenograft tumors derived from human cancer cell lines and was immunohistochemically absent in all xenograft tumors investigated. Intriguingly, TXNIP expression became gradually lower in the proximity of the primary tumor tissue and was absent in leukocytes directly adjacent to tumor tissue. In conclusion, these findings suggest that TXNIP downregulation is as a common feature in human tumor xenograft models and that intra-tumoral leukocytes down-regulate TXNIP. Hence TXNIP expression might be used to monitor the functional state of tumor-infiltrating leukocytes in tissue sections.



Sign in / Sign up

Export Citation Format

Share Document