scholarly journals Cyclin Y Is Expressed in Platelets and Modulates Integrin Outside-in Signaling

2020 ◽  
Vol 21 (21) ◽  
pp. 8239
Author(s):  
Anastasia Kyselova ◽  
Mauro Siragusa ◽  
Julian Anthes ◽  
Fiorella Andrea Solari ◽  
Stefan Loroch ◽  
...  

Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in “outside in” integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.

1987 ◽  
Author(s):  
C T Poll ◽  
J Westwick

Fura 2 is one of a recently-introduced family of Ca++ indicators with improved fluorescent properties compared to quin 2 (Grynkiewicz et al 1985). This study has examined the role of [Ca++]i in thrombin-induced dense granule release using prostacyclin-washed human platelets loaded with either thedense granule marker 14C-5HT (5HT) alone or with 5HT together with quin 2 ([quin2]i = 0.8mM) or fura 2 ([fura 2]i 20-30µM). In the presence of ImM extracellular calcium concentration ([Ca++]i) the [Ca++]e in quin 2 and fura 2 loaded platelets was 93±2 (n=10 experiments) and 133±0.3nM (n=12 experiments) respectively. In either quin 2 or fura 2 loaded platelets suspended in the presence of ImM [Ca++]e, thrombin (0.23-23.InM) promoted a rapid (in secs)concentration-dependent elevation of [Ca++]i from basal values to levels l-2µM, together with a parallel release of dense granules almost identical to that obtained with thrombin in non dye loaded platelets. In fura 2 loaded cells, removal of [Ca++]e inhibited the elevation of [Ca++]i induced by a sub-maximal concentration of thrombin (0.77nM) by 43+5% (n=4) but interestingly had no significant effect (p<0.05) on the rise in [Ca++]i elicited by low thrombin doses (0.231nM). Neither did lowering [Ca++]e inhibit the release of 5HT evoked by thrombin ( 0.231-23.InM) from either fura 2 loaded or non dye loaded platelets. In contrast, in quin 2 loaded platelets, removal of [Ca++]e inhibited the thrombin (0.231-23.InM) stimulated rise in [Ca++]i-by 90% and the 5HT release response to either low (0.231nM), sub-maximal (0.77nM) or maximal (23.InM) thrombin by 100% (n=4), 87+2°/o (n=6)and 2+l°/o (n=4) respectively. Fura 2 but not quin 2 loaded cells suspended in ImM [Ca++]e exhibited a Ca++ response to thrombin concentrations >2.31nM which could be separated into a rapid phasic component and a more sustained 'tonic' like component inhibitable by removal of [Ca++]e or by addition of ImM Ni++ . These data suggest the use of fura 2 rather than quin 2 for investigating stimulus response coupling in platelets, particularly when [Ca++]e is less than physiological. We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4523-4531 ◽  
Author(s):  
Katherine L. Tucker ◽  
Tanya Sage ◽  
Joanne M. Stevens ◽  
Peter A. Jordan ◽  
Sarah Jones ◽  
...  

Abstract Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with β1- and β3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLCγ2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in α-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for α-granule secretion and therefore may play a central role in the regulation of platelet function.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2855-2855
Author(s):  
Yamini Saraswathy Bynagari ◽  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Donna Woulfe ◽  
Soochong Kim ◽  
...  

Abstract Protein Kinase C (PKC) are family of serine threonine kinases, known to regulate various platelet functional responses. Among them novel class of PKC isoforms (nPKC) including delta(δ), theta(𝛉), eta(η), and epsilon(ε) are expressed in platelets. Although, the role of nPKC ε and η in platelets is fairly understood, not much is known about nPKC ε and η in platelets. In this study, we investigated the role of nPKC ε in platelet functional responses using ADP-induced signaling as our stereotype. ADP causes platelet activation via Gq-coupled P2Y1 receptor and Gi-coupled P2Y12 receptor. Thus, we primarily studied the role of P2Y1 receptor in nPKC ε activation. ADP activated nPKC ε in time- and concentration- dependent manner. In the presence of P2Y1 receptor antagonist MRS-2179 and in P2Y1 knockout (KO) murine platelets ADP failed to activate nPKC ε, suggesting that ADP activates nPKC ε via P2Y1 receptor. We further investigated the functional role of nPKC ε using specific nPKC ε inhibitory RACK peptide (ε V1-2). ε V1-2 is a peptide designed to compete with native nPKC ε to bind ε-Receptors for activated C Kinase (ε-RACK) and thereby inhibits nPKC ε catalytic activity due to decreased substrate accessibility. ADP-induced thromboxane generation in human platelets pretreated with ε V1-2 peptide was more compared to the platelets pretreated with control peptide. Similarly, ADP-induced thromboxane generation in platelets derived from nPKC ε KO mouse was more compared to the wild type (WT) littermates. However, ADP- induced alpha granule secretion and aggregation in aspirin treated platelets derived from PKC ε KO mice was not significantly different from platelets derived from wild type littermates. These data suggest that nPKC e regulates an unknown pathway, which primarily regulates thromboxane generation with minimal effects on aggregation and alpha granule secretion. Furthermore, we also investigated the role of nPKC ε in PAR- and GPVI- mediated platelet aggregation and dense granule secretion. Interestingly, in both aspirin-treated and non-aspirin-treated platelets PAR- and GPVI- mediated platelet aggregation and dense granule secretion were potentiated. Consistent with ex vivo studies, FeCl3-induced arterial thrombosis was enhanced in nPKC ε KO mice compared to WT littermates.


2016 ◽  
Vol 473 (5) ◽  
pp. 627-639 ◽  
Author(s):  
Michael C. Chicka ◽  
Qiansheng Ren ◽  
David Richards ◽  
Lance M. Hellman ◽  
Jinchao Zhang ◽  
...  

Platelet exocytosis, mediated by SNAREs and Ca2+-dependent regulators, is critical for haemostasis. Munc13-4 binds membranes in a Ca2+- and phosphatidylserine (PS)-dependent manner and acts as a tethering factor for pre-docked platelet dense granule secretion to mediate rapid response to vascular damage.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3203-3203
Author(s):  
Patrick Apopa ◽  
Megha Patel ◽  
Olivier Boutaud ◽  
Michael Holinstat

Abstract Abstract 3203 Platelet activation plays a central role in regulating hemostasis. Uncontrolled activation of circulating platelets can result in the formation of occlusive thrombi and stroke. Following activation, metabolism of arachidonic acid by 12-lipoxygenase (12-hLO) may play a significant role in regulating the degree and stability of platelet reactivity. Using specific inhibitors for 12-hLO which do not interact with other lipoxygenases or enzymes in the COX-1 pathway, we were able for the first time to asses the involvement of 12-hLO in platelet reactivity. In order to assess the role of 12-hLO in platelet activation and thrombosis, dense granule secretion, platelet aggregation, alpha granule secretion, and platelet adhesion and clot formation under flow were measured. Inhibiting 12-hLO results in a complete inhibition of dense granule secretion with only a partial attenuation of alpha granule secretion indicating a novel regulatory scheme for modulating positive autocrine reinforcement of platelet reactivity and clot formation. Addition of the 12-hLO metabolite, 12-HETE (as low as 250 nM), resulted in a significant (25%) increase in PAR1-mediated dense granule secretion compare to agonist alone indicating that 12-HETE may be the crucial metabolite formed by 12-hLO metabolism of arachidonic acid. Importantly, platelet aggregation and adhesion are also significantly attenuated in the absence of 12-hLO. In fact, collagen-mediated platelet aggregation was shifted over 25 fold to the right in the absence of 12-hLO. These studies support the role of 12-hLO in hemostasis and may be a good target for anti-platelet therapy. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 10 (20) ◽  
pp. 4743
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Soochong Kim

Arrestins in concert with GPCR kinases (GRKs) function in G protein-coupled receptor (GPCR) desensitization in various cells. Therefore, we characterized the functional differences of arrestin3 versus arrestin2 in the regulation of GPCR signaling and its desensitization in platelets using mice lacking arrestin3 and arrestin2. In contrast to arrestin2, platelet aggregation and dense granule secretion induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in arrestin3-deficient platelets compared to wild-type (WT) platelets, while non-GPCR agonist CRP-induced platelet aggregation and secretion were not affected. Surprisingly, in contrast to GRK6, platelet aggregation induced by the co-stimulation of serotonin and epinephrine was significantly potentiated in arrestin3-deficient platelets, suggesting the central role of arrestin3 in general GPCR desensitization in platelets. In addition, the second challenge of ADP and AYPGKF restored platelet aggregation in arrestin3-deficient platelets but failed to do so in WT and arrestin2-deficient platelets, confirming that arrestin3 contributes to GPCR desensitization. Furthermore, ADP- and AYPGKF-induced Akt and ERK phosphorylation were significantly increased in arrestin3-deficient platelets. Finally, we found that arrestin3 is critical for thrombus formation in vivo. In conclusion, arrestin3, not arrestin2, plays a central role in the regulation of platelet functional responses and thrombus formation through general GPCR desensitization in platelets.


2003 ◽  
Vol 279 (4) ◽  
pp. 2360-2367 ◽  
Author(s):  
Swaminathan Murugappan ◽  
Florin Tuluc ◽  
Robert T. Dorsam ◽  
Haripriya Shankar ◽  
Satya P. Kunapuli

1979 ◽  
Vol 182 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Holm Holmsen ◽  
Linda Robkin ◽  
H. James Day

1. Shape change, aggregation and secretion of dense-granule constituents in platelets differ in their dependence on cellular energy metabolism. The possibility that such a difference also exists between secretion of dense-granule constituents and acid hydrolases was investigated. 2. Human platelets were incubated with [14C]adenine in plasma, and then washed and resuspended in salt solutions. The effects of incubating the cells with antimycin A and 2-deoxyglucose on the concentrations of [14C]ATP, ADP, AMP, IMP and inosine plus hypoxanthine and on thrombin-induced secretion of ATP plus ADP and acid hydrolases were studied. The metabolic inhibitors only affected 14C-labelled nucleotides, whereas thrombin only liberated unlabelled ATP and ADP. 3. The extent of secretion decreased progressively with time during incubation with the metabolic inhibitors. At any time the secretion of acid hydrolases, β-N-acetylglucosaminidase, β-glucuronidase and β-galactosidase was inhibited to a greater extent than secretion of ATP plus ADP (dense-granule secretion). 4. Incubation with the metabolic inhibitors shifted the log (dose)–response relationship to higher thrombin concentrations, and with a greater shift for acid hydrolase secretion than for dense-granule secretion. 5. Antimycin, when present alone, caused a marked decrease in the rate of acid hydrolase secretion, but had no effect on dense-granule secretion. 6. These results further support the view that acid hydrolase secretion and dense-granule secretion are separate processes with different requirements for ATP energy. Acid hydrolase secretion, but not dense-granule secretion, appears to depend on a simultaneous rapid generation of ATP, which can be accomplished by oxidative, but not by glycolytic, ATP production.


2014 ◽  
Vol 290 (3) ◽  
pp. 1536-1545 ◽  
Author(s):  
Ewelina M. Golebiewska ◽  
Matthew T. Harper ◽  
Christopher M. Williams ◽  
Joshua S. Savage ◽  
Robert Goggs ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 674-686
Author(s):  
Tony G. Walsh ◽  
Yong Li ◽  
Christopher M. Williams ◽  
Elizabeth W. Aitken ◽  
Robert K. Andrews ◽  
...  

Abstract The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5′-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.


Sign in / Sign up

Export Citation Format

Share Document