conditional knockout mouse
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 28)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 14 ◽  
Author(s):  
Jean Marie Delalande ◽  
Nandor Nagy ◽  
Conor J. McCann ◽  
Dipa Natarajan ◽  
Julie E. Cooper ◽  
...  

TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.


2021 ◽  
Author(s):  
Hannah Demond ◽  
Courtney W Hanna ◽  
Juan Castillo-Fernandez ◽  
Fatima Santos ◽  
Evangelina K Papachristou ◽  
...  

GLP (EHMT1) functions as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with G9A (EHMT2). Here, we investigated the role of GLP in oocyte and embryo development in comparison to G9A using oocyte-specific conditional knockout mouse models (G9a cKO, Glp cKO, G9a-Glp cDKO). Loss of GLP in oogenesis severely impairs oocyte maturation, fertilization and embryo development, resulting in lethality before embryonic day E12.5. In contrast, loss of G9A has a milder effect with a proportion of embryos producing viable offspring. The Glp cKO also showed loss of G9A protein and, hence, was phenotypically very similar to the G9a-Glp cDKO. H3K9me2 was equally depleted in all cKO genotypes, whereas H3K9me1 was decreased only in Glp cKO and G9a-Glp cDKO oocytes. Furthermore, the transcriptome, DNA methylome and proteome were markedly more affected in G9a-Glp cDKO than G9a cKO oocytes, demonstrating that in the absence of GLP there are widespread epigenetic and gene expression changes in the oocyte independent of H3K9me2. Gene dysregulation with coupled changes in DNA methylation suggest localised loss of chromatin repression, resulting in upregulated protein expression. Together, our findings demonstrate that GLP can function independently of G9A in the oocyte and is required for oocyte developmental competence.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2310
Author(s):  
Marina Di Domenico ◽  
Melanie Jokwitz ◽  
Walter Witke ◽  
Pietro Pilo Boyl

Profilin functions have been discussed in numerous cellular processes, including actin polymerization. One puzzling aspect is the concomitant expression of more than one profilin isoform in most tissues. In neuronal precursors and in neurons, profilin 1 and profilin 2 are co-expressed, but their specific and redundant functions in brain morphogenesis are still unclear. Using a conditional knockout mouse model to inactivate both profilins in the developing CNS, we found that threshold levels of profilin are necessary for the maintenance of the neuronal stem-cell compartment and the generation of the differentiated neurons, irrespective of the specific isoform. During embryonic development, profilin 1 is more abundant than profilin 2; consequently, modulation of profilin 1 levels resulted in a more severe phenotype than depletion of profilin 2. Interestingly, the relevance of the isoforms was reversed in the postnatal brain. Morphology of mature neurons showed a stronger dependence on profilin 2, since this is the predominant isoform in neurons. Our data highlight redundant functions of profilins in neuronal precursor expansion and differentiation, as well as in the maintenance of pyramidal neuron dendritic arborization. The specific profilin isoform is less relevant; however, a threshold profilin level is essential. We propose that the common activity of profilin 1 and profilin 2 in actin dynamics is responsible for the observed compensatory effects.


Author(s):  
Chunlei Shao ◽  
Pengbo Lou ◽  
Ruiqi Liu ◽  
Xueyun Bi ◽  
Guilin Li ◽  
...  

Myoepithelial and luminal cells synergistically expand in the mammary gland during pregnancy, and this process is precisely governed by hormone-related signaling pathways. The bone morphogenetic protein (BMP) signaling pathway is now known to play crucial roles in all organ systems. However, the functions of BMP signaling in the mammary gland remain unclear. Here, we found that BMPR1a is upregulated by hormone-induced Sp1 at pregnancy. Using a doxycycline (Dox)-inducible BMPR1a conditional knockout mouse model, we demonstrated that loss of BMPR1a in myoepithelium results in compromised myoepithelial integrity, reduced mammary stem cells and precocious alveolar differentiation during pregnancy. Mechanistically, BMPR1a regulates the expression of p63 and Slug, two key regulators of myoepithelial maintenance, through pSmad1/5-Smad4 complexes, and consequently activate P-cadherin during pregnancy. Furthermore, we observed that loss of BMPR1a in myoepithelium results in the upregulation of a secreted protein Spp1 that could account for the precocious alveolar differentiation in luminal layer, suggesting a defective basal-to-luminal paracrine signaling mechanism. Collectively, these findings identify a novel role of BMP signaling in maintaining the identity of myoepithelial cells and suppressing precocious alveolar formation.


Blood ◽  
2021 ◽  
Author(s):  
Li Jiang ◽  
Jiaming Wang ◽  
Kai Wang ◽  
Hao Wang ◽  
Qian Wu ◽  
...  

Ferroportin (FPN), the body's sole iron exporter, is essential for maintaining systemic iron homeostasis. In response to either increased iron or inflammation, hepatocyte-secreted hepcidin binds to FPN, inducing its internalization and subsequent degradation. However, the E3 ubiquitin ligase that underlies FPN degradation has not been identified. Here, we report the identification and characterization of a novel mechanism involving the RNF217-mediated degradation of FPN. A combination of two different E3 screens revealed that the Rnf217 gene is a target of Tet1, mediating the ubiquitination and subsequent degradation of FPN. Interestingly, loss of Tet1 expression causes an accumulation of FPN and an impaired response to iron overload, manifested by increased iron accumulation in the liver together with decreased iron in the spleen and duodenum. Moreover, we found that the degradation and ubiquitination of FPN could be attenuated by mutating RNF217. Finally, using two conditional knockout mouse lines, we found that knocking out Rnf217 in macrophages increases splenic iron export by stabilizing FPN, whereas knocking out Rnf217 in intestinal cells appears to increase iron absorption. These findings suggest that the Tet1-RNF217-FPN axis regulates iron homeostasis, revealing new therapeutic targets for FPN-related diseases.


Author(s):  
Danny Laurent ◽  
Abbi E Smith ◽  
Waylan K Bessler ◽  
Marc Mendonca ◽  
Helen Chin-Sinex ◽  
...  

Abstract Background Genetically susceptible individuals can develop malignancies after irradiation of normal tissues. In the context of therapeutic irradiation, it is not known whether irradiating benign neoplasms in susceptible individuals promotes neoplastic transformation and worse clinical outcomes. Individuals with Neurofibromatosis 1 (NF1) are susceptible to both radiation-induced second malignancies and spontaneous progression of plexiform neurofibromas (PNs) to malignant peripheral nerve sheath tumors (MPNSTs). The role of radiotherapy in the treatment of benign neoplasms such as PNs is unclear. Methods To test whether radiotherapy promotes neoplastic progression of PNs and reduces overall survival, we administered spinal irradiation (SI) to conditional knockout mouse models of NF1-associated PNs in two germline contexts: Nf1 fllfl; PostnCre + and Nf1 fl/-; PostnCre +. Both genotypes develop extensive Nf1 null spinal PNs, modeling PNs in NF1 patients. A total of 101 mice were randomized to 0 Gy, 15 Gy (3 Gy x 5), or 30 Gy (3 Gy x 10) of spine-focused, fractionated SI and aged until signs of illness. Results SI decreased survival in both Nf1 fllfl mice and Nf1 fl/- mice, with the worst overall survival occurring in Nf1 fl/- mice receiving 30 Gy. SI was also associated with increasing worrisome histologic features along the PN-MPNST continuum in PNs irradiated to higher radiation doses. Conclusions This pre-clinical study provides experimental evidence that irradiation of pre-existing PNs reduces survival and may shift PNs to higher grade neoplasms.


2021 ◽  
Author(s):  
Lenin C Kandasamy ◽  
Mina Tsukamoto ◽  
Vitaliy Banov ◽  
Sambuu Tsetsegee ◽  
Yutaro Nagasawa ◽  
...  

Abstract Posttranslational modification of a protein with glycosylphosphatidylinositol (GPI) is a conserved mechanism exists in all eukaryotes. Thus far, >150 human GPI-anchored proteins have been discovered and ~30 enzymes have been reported to be involved in the biosynthesis and maturation of mammalian GPI. Phosphatidylinositol glycan biosynthesis class A protein (PIGA) catalyzes the very first step of GPI anchor biosynthesis. Patients carrying a mutation of the PIGA gene usually suffer from inherited glycosylphosphatidylinositol deficiency (IGD) with intractable epilepsy and intellectual developmental disorder. We generated three mouse models with PIGA deficits specifically in telencephalon excitatory neurons (Ex-M-cko), inhibitory neurons (In-M-cko) or thalamic neurons (Th-H-cko), respectively. Both Ex-M-cko and In-M-cko mice showed impaired long-term fear memory and were more susceptible to kainic acid-induced seizures. In addition, In-M-cko demonstrated a severe limb-clasping phenotype. Hippocampal synapse changes were observed in Ex-M-cko mice. Our Piga conditional knockout mouse models provide powerful tools to understand the cell-type specific mechanisms underlying inherited GPI deficiency and to test different therapeutic modalities.


Author(s):  
Vanessa Dimchev ◽  
Ines Lahmann ◽  
Stefan A. Koestler ◽  
Frieda Kage ◽  
Georgi Dimchev ◽  
...  

The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.


2021 ◽  
pp. 100028
Author(s):  
Babunageswararao Kanuri ◽  
Vincent Fong ◽  
Sithara Raju Ponny ◽  
Ranjuna Weerasekera ◽  
Kirthi Pulakanti ◽  
...  

2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Andre Felipe Batista ◽  
Maren Schroeder ◽  
Khyrul Khan ◽  
Esra Yalcin ◽  
Michael Carroll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document