scholarly journals Genetic Background Underlying 5-HT1A Receptor Functioning Affects the Response to Fluoxetine

2020 ◽  
Vol 21 (22) ◽  
pp. 8784
Author(s):  
Elena M. Kondaurova ◽  
Alexander Ya. Rodnyy ◽  
Tatiana V. Ilchibaeva ◽  
Anton S. Tsybko ◽  
Dmitry V. Eremin ◽  
...  

The influence of genetic background on sensitivity to drugs represents a topical problem of personalized medicine. Here, we investigated the effect of chronic (20 mg/kg, 14 days, i.p.) antidepressant fluoxetine treatment on recombinant B6-M76C mice, differed from control B6-M76B mice by CBA-derived 102.73–110.56 Mbp fragment of chromosome 13 and characterized by altered sensitivity of 5-HT1A receptors to chronic 8-OH-DPAT administration and higher 5-HT1A receptor mRNA levels in the frontal cortex and hippocampus. Significant changes in the effects of fluoxetine treatment on behavior and brain 5-HT system in recombinant B6-M76C mice were revealed. In contrast to B6-M76B mice, in B6-M76C mice, fluoxetine produced pro-depressive effects, assessed in a forced swim test. Fluoxetine decreased 5-HT1A receptor mRNA levels in the cortex and hippocampus, reduced 5-HT1A receptor protein levels and increased receptor silencer Freud-1 protein levels in the hippocampus of B6-M76C mice. Fluoxetine increased mRNA levels of the gene encoding key enzyme for 5-HT synthesis in the brain, tryptophan hydroxylase-2, but decreased tryptophan hydroxylase-2 protein levels in the midbrain of B6-M76B mice. These changes were accompanied by increased expression of the 5-HT transporter gene. Fluoxetine reduced 5-HT and 5-HIAA levels in cortex, hippocampus and midbrain of B6-M76B and in cortex and midbrain of B6-M76C; mice. These data demonstrate that changes in genetic background may have a dramatic effect on sensitivity to classic antidepressants from the Selective Serotonin Reuptake Inhibitors family. Additionally, the results provide new evidence confirming our idea on the disrupted functioning of 5-HT1A autoreceptors in the brains of B6-M76C mice, suggesting these mice as a model of antidepressant resistance.

1999 ◽  
Vol 276 (4) ◽  
pp. R1164-R1171 ◽  
Author(s):  
K. M. Kelley ◽  
T. R. Johnson ◽  
J. Ilan ◽  
R. W. Moskowitz

Nonresponsiveness to the growth-stimulatory actions of insulin-like growth factor (IGF)-I in chondrocytes has been reported in a number of disease states associated with impaired glucose metabolism. Primary rabbit chondrocytes were investigated for changes in their IGF response system [type-I IGF receptor and IGF-binding protein (IGFBP) expression] and in their ability to mount a synthetic response to IGF-I [as35S-labeled proteoglycan ([35S]PG) production] in media containing varying ambient glucose concentrations. Whereas basal [35S]PG synthetic rate was unaffected by glucose concentration, synthetic responsiveness to IGF-I was lost in media containing <5 mmol/l glucose or in media containing a “diabetic” glucose concentration (25 mmol/l). IGFBP expression, as measured by Northern analysis of mRNA levels and Western ligand blotting of secreted protein levels, was not significantly altered in the different glucose media, nor were there any differences in the cell surface localization of IGFBPs as assessed by affinity cross-linking with 125I-labeled IGF-I, suggesting that IGFBPs do not induce the IGF-I resistance. The nonresponsiveness to IGF-I in reduced glucose occurred with 25–50% reductions in steady-state levels of IGF type-I receptor mRNA and protein. A significant correlation between IGF receptor mRNA level and synthetic response to IGF-I was observed between 0 and 10 mmol/l glucose concentrations, suggesting that the loss of responsiveness in reduced glucose is manifested at the level of transcription and/or receptor mRNA stability. In contrast, nonresponsiveness to IGF-I in chondrocytes in diabetic glucose concentrations occurred without changes in receptor mRNA and protein levels, suggesting that IGF-I resistance was due to post-ligand-binding receptor defects. It is proposed that IGF-I resistance in chondrocytes subjected to inappropriate glucose levels may constitute an important pathogenic mechanism in degenerative cartilage disorders.


2021 ◽  
pp. 1-18
Author(s):  
Christian Ulrich von Linstow ◽  
Jonas Waider ◽  
Marianne Skov-Skov Bergh ◽  
Marco Anzalone ◽  
Cecilie Madsen ◽  
...  

Background: A decline of brain serotonin (5-HT) is held responsible for the changes in mood that can be observed in Alzheimer’s disease (AD). However, 5-HT’ergic signaling is also suggested to reduce the production of pathogenic amyloid-4β (Aβ). Objective: To investigate the effect of targeted inactivation of tryptophan hydroxylase-2 (Tph2), which is essential for neuronal 5-HT synthesis, on amyloidosis in amyloid precursor protein (APP)swe/presenilin 1 (PS1) ΔE9 transgenic mice. Methods: Triple-transgenic (3xTg) APP/PS1 mice with partial (+/-) or complete Tph2 knockout (–/–) were allowed to survive until 6 months old with APP/PS1, Tph2–/–, and wildtype mice. Survival and weight were recorded. Levels of Aβ 42/40/38, soluble APPα (sAβPPα) and sAβPPβ, and cytokines were analyzed by mesoscale, neurotransmitters by mass spectrometry, and gene expression by quantitative PCR. Tph2, microglia, and Aβ were visualized histologically. Results: Tph2 inactivation in APP/PS1 mice significantly reduced viability, without impacting soluble and insoluble Aβ 42 and Aβ 40 in neocortex and hippocampus, and with only mild changes of soluble Aβ 42/Aβ 40. However, sAβPPα and sAβPPβ in hippocampus and Aβ 38 and Aβ 40 in cerebrospinal fluid were reduced. 3xTg–/–mice were devoid of Tph2 immunopositive fibers and 5-HT. Cytokines were unaffected by genotype, as were neocortical TNF, HTR2a and HTR2b mRNA levels in Tph2–/– mice. Microglia clustered around Aβ plaques regardless of genotype. Conclusion: The results suggest that Tph2 inactivation influences AβPP processing, at least in the hippocampus, although levels of Aβ are unchanged. The reduced viability of 3xTg–/–mice could indicate that 5-HT protects against the seizures that can impact the viability of APP/PS1 mice.


1994 ◽  
Vol 266 (2) ◽  
pp. F316-F324
Author(s):  
J. C. Muir ◽  
L. Huang ◽  
J. K. Harrison ◽  
D. L. Rosin ◽  
M. D. Okusa

Potassium depletion and alpha 2-adrenergic receptor (alpha 2-AR) agonists produce similar physiological effects on renal function. Both stimuli increase Na-H exchange in proximal tubule cells, inhibit water transport in collecting tubule cells, and alter blood pressure regulation. The purpose of this study was to determine whether potassium depletion and renal alpha 2-AR subtype expression were linked. Kidney membrane proteins and RNA were harvested from anesthetized rats fed a potassium-deficient diet for 4-20 days (LK 4 to LK 20). Using a selective alpha 2-AR antagonist, [3H]MK-912, we observed that potassium depletion led to a dramatic increase in maximum binding (270% of control) without a change in dissociation constant. Competitive binding studies in LK 14 kidney membranes employing chlorpromazine, prazosin, and oxymetazoline suggested that the increase in alpha 2-ARs in response to potassium depletion was due primarily to an increase in the B subtype of alpha 2-AR. Northern blot analysis demonstrated that renal alpha 2B-AR mRNA levels increased (190% of control) after 4 or 14 days on a potassium-deficient diet. In contrast, there was no difference in steady-state alpha 2A-receptor protein levels by Western blot analysis. We conclude that potassium depletion selectively increases the expression of the B subtype of alpha 2-AR with no detectable effect on alpha 2A-AR expression.


2003 ◽  
Vol 284 (1) ◽  
pp. R51-R56 ◽  
Author(s):  
Sharla F. Young ◽  
Jennifer L. Smith ◽  
Jorge P. Figueroa ◽  
James C. Rose

Corticotroph responsiveness to arginine vasopressin (AVP) increases during late gestation in fetal sheep. The mechanism of this increase in AVP responsiveness is currently unknown but could be related to an increase in vasopressin type 1b (V1b) receptor expression in the pituitary during development. To determine if there are ontogenic changes in V1b receptor expression that may help explain the changes in ACTH responses to AVP, we studied pituitaries from three groups of fetal sheep [100, 120, or 140 days gestational age (dGA)]. V1b receptor mRNA and protein significantly decreased by 140 dGA. Peak V1b mRNA levels were detected at 100 dGA, while peak V1b protein levels were detected at 120 dGA. The reduction in V1b receptor expression in late gestation may be due to the naturally occurring peripartum increase in fetal plasma cortisol because cortisol infusion at 122–130 dGA decreased V1b receptor mRNA. Thus there is a marked decrease in the expression of the V1b receptor in the pituitary during fetal development, leaving the role of the V1b receptor in increasing AVP responsiveness uncertain.


Sign in / Sign up

Export Citation Format

Share Document