Regulation of rat renal alpha 2 B-adrenergic receptors by potassium depletion

1994 ◽  
Vol 266 (2) ◽  
pp. F316-F324
Author(s):  
J. C. Muir ◽  
L. Huang ◽  
J. K. Harrison ◽  
D. L. Rosin ◽  
M. D. Okusa

Potassium depletion and alpha 2-adrenergic receptor (alpha 2-AR) agonists produce similar physiological effects on renal function. Both stimuli increase Na-H exchange in proximal tubule cells, inhibit water transport in collecting tubule cells, and alter blood pressure regulation. The purpose of this study was to determine whether potassium depletion and renal alpha 2-AR subtype expression were linked. Kidney membrane proteins and RNA were harvested from anesthetized rats fed a potassium-deficient diet for 4-20 days (LK 4 to LK 20). Using a selective alpha 2-AR antagonist, [3H]MK-912, we observed that potassium depletion led to a dramatic increase in maximum binding (270% of control) without a change in dissociation constant. Competitive binding studies in LK 14 kidney membranes employing chlorpromazine, prazosin, and oxymetazoline suggested that the increase in alpha 2-ARs in response to potassium depletion was due primarily to an increase in the B subtype of alpha 2-AR. Northern blot analysis demonstrated that renal alpha 2B-AR mRNA levels increased (190% of control) after 4 or 14 days on a potassium-deficient diet. In contrast, there was no difference in steady-state alpha 2A-receptor protein levels by Western blot analysis. We conclude that potassium depletion selectively increases the expression of the B subtype of alpha 2-AR with no detectable effect on alpha 2A-AR expression.

2006 ◽  
Vol 291 (6) ◽  
pp. F1255-F1263 ◽  
Author(s):  
Selvi C. Jeyaraj ◽  
Duaa Dakhlallah ◽  
Stephanie R. Hill ◽  
Beth S. Lee

Human antigen R (HuR) is a nucleocytoplasmic shuttling protein that binds to and stabilizes mRNAs containing adenine- and uridine-rich elements. Under normal growth conditions, the bulk of HuR is maintained in the nucleus, but under conditions of cell stress, HuR may become more prevalent in the cytosol, where it can stabilize mRNA and regulate gene expression. We have studied the behavior of HuR in LLC-PK1 proximal tubule cells subjected to ATP depletion and recovery. ATP depletion resulted in detectable net movement of HuR out of the nucleus, followed by net movement of HuR back into the nucleus on reversion to normal growth medium. In addition, HuR protein levels increased during energy depletion. This increase was inhibited by cycloheximide and was independent of HuR mRNA levels, since no change was noted in the quantity of HuR transcript. In contrast, recovery in normal growth medium resulted in increased HuR mRNA, while protein levels decreased to baseline. This suggested a mechanism by which previously injured cells maintained normal levels of HuR but were primed to rapidly translate increased amounts of protein on subsequent insults. Indeed, a second round of ATP depletion resulted in heightened HuR protein translation at a rate more rapid than during the first insult. Additionally, the second insult produced increased HuR levels in the cytoplasm while still maintaining high amounts in the nucleus, indicating that nuclear export may not be required on subsequent insults. These results suggest a role for HuR in protecting kidney epithelia from injury during ischemic stress.


1998 ◽  
Vol 274 (5) ◽  
pp. F897-F905 ◽  
Author(s):  
Thomas J. Thekkumkara ◽  
Rochelle Cookson ◽  
Stuart L. Linas

Angiotensin II (ANG II), acting through angiotensin type 1A receptors (AT1A), is important in regulating proximal tubule salt and water balance. AT1A are present on apical (AP) and basolateral (BL) surfaces of proximal tubule epithelial cells (PTEC). The molecular mechanism of AT1A function in epithelial tissue is not well understood, because specific binding of ANG II to intact PTEC has not been found and because a number of isoforms of AT receptors are present in vivo. To overcome this problem, we developed a cell line from opossum kidney (OK) proximal tubule cells, which stably express AT1A( K d = 5.27 nM, Bmax = 6.02 pmol/mg protein). Characterization of nontransfected OK cells revealed no evidence of AT1A mRNA (reverse transcriptase-polymerase chain reaction analysis) or protein (125I-labeled ANG II binding studies) expression. In cells stably expressing AT1A, ANG II binding was saturable, reversible, and regulated by G proteins. Transfected receptors were coupled to increases in intracellular calcium and inhibition of cAMP. To determine the polarity of AT1A expression and function in proximal tubules, transfected cells were grown to confluence on membrane inserts under conditions that allowed selective access to AP or BL surfaces. AT1A were expressed on both AP ( K d = 8.7 nM, Bmax = 3.33 pmol/mg protein) and BL ( K d = 10.1 nM, Bmax = 5.50 pmol/mg protein) surfaces. Both AP and BL AT1Areceptors underwent agonist-dependent endocytosis (AP receptor: t 1/2 = 7.9 min, Ymax = 78.5%; BL receptor: t 1/2 = 2.1 min, Ymax = 86.3%). In cells transfected with AT1A, ANG II caused time- and concentration-dependent increases in transepithelial22Na transport (2-fold over control at 20 min) by increasing Na/H exchange. In conclusion, we have established a stable proximal tubule cell line that expresses AT1A on both AP and BL surfaces, undergoes agonist-dependent receptor endocytosis, and is functional, as evidenced by inhibition of cAMP and increases in cytosolic calcium mobilization and transepithelial sodium movement. This cell line should prove useful for understanding the molecular and biochemical regulation of AT1A expression and function in PTEC.


2020 ◽  
Vol 21 (22) ◽  
pp. 8784
Author(s):  
Elena M. Kondaurova ◽  
Alexander Ya. Rodnyy ◽  
Tatiana V. Ilchibaeva ◽  
Anton S. Tsybko ◽  
Dmitry V. Eremin ◽  
...  

The influence of genetic background on sensitivity to drugs represents a topical problem of personalized medicine. Here, we investigated the effect of chronic (20 mg/kg, 14 days, i.p.) antidepressant fluoxetine treatment on recombinant B6-M76C mice, differed from control B6-M76B mice by CBA-derived 102.73–110.56 Mbp fragment of chromosome 13 and characterized by altered sensitivity of 5-HT1A receptors to chronic 8-OH-DPAT administration and higher 5-HT1A receptor mRNA levels in the frontal cortex and hippocampus. Significant changes in the effects of fluoxetine treatment on behavior and brain 5-HT system in recombinant B6-M76C mice were revealed. In contrast to B6-M76B mice, in B6-M76C mice, fluoxetine produced pro-depressive effects, assessed in a forced swim test. Fluoxetine decreased 5-HT1A receptor mRNA levels in the cortex and hippocampus, reduced 5-HT1A receptor protein levels and increased receptor silencer Freud-1 protein levels in the hippocampus of B6-M76C mice. Fluoxetine increased mRNA levels of the gene encoding key enzyme for 5-HT synthesis in the brain, tryptophan hydroxylase-2, but decreased tryptophan hydroxylase-2 protein levels in the midbrain of B6-M76B mice. These changes were accompanied by increased expression of the 5-HT transporter gene. Fluoxetine reduced 5-HT and 5-HIAA levels in cortex, hippocampus and midbrain of B6-M76B and in cortex and midbrain of B6-M76C; mice. These data demonstrate that changes in genetic background may have a dramatic effect on sensitivity to classic antidepressants from the Selective Serotonin Reuptake Inhibitors family. Additionally, the results provide new evidence confirming our idea on the disrupted functioning of 5-HT1A autoreceptors in the brains of B6-M76C mice, suggesting these mice as a model of antidepressant resistance.


2002 ◽  
Vol 283 (4) ◽  
pp. C1122-C1132 ◽  
Author(s):  
Mouhamed S. Awayda ◽  
Justin D. Platzer ◽  
Roxanne L. Reger ◽  
Abderrahmane Bengrine

It has long been known that Na+ channels in electrically tight epithelia are regulated by homeostatic mechanisms that maintain a steady state and allow new levels of transport to be sustained in hormonally challenged cells. Little is known about the potential pathways involved in these processes. In addition to short-term effect, recent evidence also indicates the involvement of PKC in the long-term regulation of the epithelial Na+ channel (ENaC) at the protein level (40). To determine whether stimulation of ENaC involves feedback regulation of PKC levels, we utilized Western blot analysis to determine the distribution of PKC isoforms in polarized A6 epithelia. We found the presence of PKC isoforms in the conventional (α and γ), novel (δ, η, and ε), and atypical (ι, λ, and ζ) groups. Steady-state stimulation of Na+ transport with aldosterone was accompanied by a specific decrease of PKCα protein levels in both the cytoplasmic and membrane fractions. Similarly, overnight treatment with an uncharged amiloride analog (CDPC), a procedure that through feedback regulation causes a stimulation of Na+ transport, also decreased PKCα levels. These effects were additive, indicating separate mechanisms that converge at the level of PKCα. These effects were not accompanied by changes of PKCα mRNA levels as determined by Northern blot analysis. We propose that this may represent a novel regulatory feedback mechanism necessary for sustaining an increase of Na+ transport.


1991 ◽  
Vol 1 (11) ◽  
pp. 1220-1229
Author(s):  
F N Ziyadeh ◽  
D A Simmons ◽  
E R Snipes ◽  
S Goldfarb

Tubulointerstitial lesions often develop in the kidneys of patients and experimental animals with diabetes mellitus. In an in vitro model of diabetic renal disease, it has been previously demonstrated in this laboratory that elevated glucose levels stimulate procollagen transcription and secretion in proximal tubule cells in culture while inducing cellular hypertrophy and reducing cellular proliferation. Previous experiments in other tissues have suggested that myo-inositol supplementation, probably by reversing a disturbance in cell myo-inositol metabolism related to increased activity of the polyol pathway, reverses the effects of glucose on cell function. We tested the effect of myo-inositol supplementation on proximal tubule cells in culture in the presence of elevated medium glucose level. Incubation in 450 mg/dL of glucose media reduced cell proliferation; 450 mg/dL of glucose plus myo-inositol (800 microM) increased proliferation, returning the value to that seen in cells incubated in 100 mg/dL of glucose. Incubation in 450 mg/dL of glucose media increased type IV and type I procollagen mRNA levels and peptide secretion rates compared with those seen in cells incubated in medium containing 100 mg/dL of glucose. This glucose-induced stimulation of procollagen mRNA levels and procollagen secretion was not observed when the elevated glucose medium was supplemented with 800 microM myo-inositol. On the other hand, myo-inositol supplementation did not prevent the glucose-induced cellular hypertrophy: there was no reduction in the increased leucine incorporation and cellular protein content. Cell incubation in 450 mg/dL of glucose media did not lead to a measurable decrease in total cellular myo-inositol.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
pp. 655-661 ◽  
Author(s):  
F Arturi ◽  
I Presta ◽  
D Scarpelli ◽  
JM Bidart ◽  
M Schlumberger ◽  
...  

BACKGROUND: Various clinical and experimental findings support the concept that human chorionic gonadotropin (hCG) can stimulate iodide uptake in thyroid cells. DESIGN: We investigated the molecular mechanisms underlying the effects of hCG on iodide uptake, and particularly its action on the expression of Na+/I- symporter (NIS) mRNA and protein. METHODS: Iodide uptake was analyzed in FTRL-5 cells by measuring (125)I concentrations in cells after a 30-min exposure to 0.1 microCi carrier-free Na (125)I in the presence or absence of hCG or, for control purposes, TSH. Expression of NIS mRNA and NIS protein synthesis were evaluated, respectively, with a semiquantitative 'multiplex' RT-PCR method and Western blot analysis. RESULTS: Iodide uptake was increased by hCG in a dose- and time-dependent manner: maximal effects were observed after 72 h of stimulation. The effect was cAMP dependent and paralleled that of TSH, although it lacked the early cycloheximide-independent component seen with TSH, and its peak effect was lower. Semiquantitative multiplex RT-PCR revealed that hCG produced a significant increase in NIS mRNA levels that was detectable after 4 h and peaked after 48 h. In contrast, in TSH-stimulated FRTL-5 cells, maximum NIS mRNA expression was observed after 24 h of stimulation. Western blot analysis demonstrated that hCG also caused a 2.5-fold increase over basal values in NIS protein levels, which was similar to that observed after TSH stimulation although the peak effects of the latter hormone were less marked and occurred earlier. CONCLUSION: Our data demonstrated that hCG stimulates iodide uptake in FRTL-5 cells by increasing NIS mRNA and protein levels. Thus, the functional status of the thyroid may be influenced by hCG-dependent changes in NIS expression occurring during pregnancy.


1999 ◽  
Vol 276 (2) ◽  
pp. L239-L245 ◽  
Author(s):  
A. Lines ◽  
L. Nardo ◽  
I. D. Phillips ◽  
F. Possmayer ◽  
S. B. Hooper

Obstruction of the fetal trachea is a potent stimulus for fetal lung growth, and it has been suggested that this procedure may be used therapeutically to reverse lung growth deficits in human fetuses with lung hypoplasia. However, little is known about the effects of increased lung expansion on other aspects of lung development. Our aim was to determine the effect of increased and decreased lung expansion on the mRNA levels encoding surfactant protein (SP) A, SP-B, and SP-C in ovine fetal lungs. Lung tissue samples were collected from fetuses exposed to 2, 4, or 10 days of increased lung expansion caused by tracheal obstruction. The mRNA levels for SP-A, SP-B, and SP-C were determined by Northern blot analysis with specific ovine cDNA probes; SP-A protein levels were determined by Western blot analysis. Compared with age-matched (128-day gestational age) control fetuses, SP-A, SP-B, and SP-C mRNA levels in fetal lung tissue were significantly reduced at 2 days of tracheal obstruction and remained reduced at 4 and 10 days. However, SP-A protein levels were not reduced at 2 days of tracheal obstruction, tended to be reduced at 4 days, and were almost undetectable at 10 days. In contrast to tracheal obstruction, 7 days of lung liquid drainage significantly increased SP-C, but not SP-A, mRNA levels in fetal lung tissue compared with age-matched control fetuses. Our results demonstrate that increases in fetal lung expansion, induced by obstruction of the fetal trachea, cause large simultaneous reductions in SP-A, SP-B, and SP-C mRNA levels in the fetal lung as well as a decrease in SP-A protein levels. These data suggest that expression of the genes encoding SPs in the fetal lung are specifically responsive to the degree of lung expansion.


1992 ◽  
Vol 263 (2) ◽  
pp. C436-C442 ◽  
Author(s):  
M. J. Tang ◽  
A. A. McDonough

Studies from this laboratory demonstrate that LLC-PK1/Cl4 cells, a cultured renal cell line, respond to incubation in low-K+ medium by coordinately increasing abundance of both alpha- and beta-subunits of Na(+)-K(+)-ATPase but increase only beta- and not alpha-mRNA levels (Lescale-Matys et al. J. Biol. Chem. 265: 17935-17940, 1990) and that alpha-abundance is likely increased as a result of increased efficiency of alpha-mRNA translation (L. Lescale-Matys and A. A. McDonough. J. Cell Biol. 111: 311A, 1990). The aim of this report was to determine if nontransformed kidney cells would respond to low K+ in a similar manner. We incubated primary cultures of rat proximal tubule cells in low K+ (0.25 mM) for up to 24 h to address this aim. Na(+)-K(+)-ATPase activity, measured enzymatically, and abundance of alpha- and beta-subunits, measured by immunoblot, were increased significantly and coordinately by 8 h of low K+, and, by 24 h of low K+, these parameters were increased to 2.17 +/- 0.34 (activity), 2.03 +/- 0.21 (alpha), and 2.39 +/- 0.48 (beta)-fold over control. Pretranslationally, beta-mRNA, measured by Northern blot analysis, increased to 1.76 +/- 0.35 after 3 h of low K+ and to 3.4 +/- 0.75-fold over control after 24 h of low K+. The increase in alpha-mRNA was smaller and delayed compared with the beta-mRNA response, but it was sufficient to account for the observed increase in alpha-protein and Na(+)-K(+)-ATPase activity at steady state: alpha-mRNA increased to 1.27 +/- 0.09 after 6 h and to 1.91 +/- 0.41-fold over control after 24 h in low K+. We conclude that the accumulation of sodium pumps in cultured renal proximal tubule cells, unlike LLC-PK1 cells, can be accounted for by increases in both alpha- and beta-subunit mRNA levels.


2009 ◽  
Vol 296 (6) ◽  
pp. F1439-F1451 ◽  
Author(s):  
Adam N. Elwi ◽  
Vijaya L. Damaraju ◽  
Michelle L. Kuzma ◽  
Delores A. Mowles ◽  
Stephen A. Baldwin ◽  
...  

This study examined the roles of human nucleoside transporters (hNTs) in mediating transepithelial fluxes of adenosine, 2′-deoxyadenosine, and three purine nucleoside anti-cancer drugs across polarized monolayers of human renal proximal tubule cells (hRPTCs), which were shown in previous studies to have human equilibrative NT 1 (hENT1) and 2 (hENT2) and human concentrative NT 3 (hCNT3) activities ( 11 ). Early passage hRPTCs were cultured on transwell inserts under conditions that induced formation of polarized monolayers with experimentally accessible apical and basolateral domains. Polarized hRPTC cultures were monitored for inhibitor sensitivities and sodium-dependence of the following: 1) transepithelial fluxes of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine (9-β-d-arabinosyl-2-fluoroadenine), cladribine (2-chloro-2′-deoxyadenosine), and clofarabine (2-chloro-2′-fluoro-deoxy-9-β-d-arabinofuranosyladenine); 2) mediated uptake of radiolabeled adenosine, 2′-deoxyadenosine, fludarabine, cladribine, and clofarabine from either apical or basolateral surfaces; and 3) relative apical cell surface hCNT3 protein levels. Transepithelial fluxes of adenosine were mediated from apical-to-basolateral sides by apical hCNT3 and basolateral hENT2, whereas transepithelial fluxes of 2′-deoxyadenosine were mediated from basolateral-to-apical sides by apical hENT1 and basolateral human organic anion transporters (hOATs). The transepithelial fluxes of adenosine, hCNT3-mediated cellular uptake of adenosine, and relative apical cell surface hCNT3 protein levels correlated positively in polarized hRPTCs. The purine nucleoside anti-cancer drugs fludarabine, cladribine, and clofarabine, like adenosine exhibited apical-to-basolateral fluxes. Collectively, this evidence suggested that apical hCNT3 and basolateral hENT2 are involved in proximal tubular reabsorption of adenosine and some nucleoside drugs and that apical hENT1 and basolateral hOATs are involved in proximal tubular secretion of 2′-deoxyadenosine.


Sign in / Sign up

Export Citation Format

Share Document