scholarly journals Genomic Instability Is an Early Event in Aluminium-Induced Tumorigenesis

2020 ◽  
Vol 21 (23) ◽  
pp. 9332
Author(s):  
Stefano J. Mandriota ◽  
Mirna Tenan ◽  
Adeline Nicolle ◽  
Julia D. Jankowska ◽  
Paolo Ferrari ◽  
...  

Genomic instability is generally considered as a hallmark of tumorigenesis and a prerequisite condition for malignant transformation. Aluminium salts are suspected environmental carcinogens that transform mammary epithelial cells in vitro through unknown mechanisms. We report here that long-term culture in the presence of aluminium chloride (AlCl3) enables HC11 normal mouse mammary epithelial cells to form tumours and metastases when injected into the syngeneic and immunocompetent BALB/cByJ strain. We demonstrate that AlCl3 rapidly increases chromosomal structural abnormalities in mammary epithelial cells, while we failed to detect direct modulation of specific mRNA pathways. Our observations provide evidence that clastogenic activity—a well-recognized inducer of genomic instability—might account in part for the transforming abilities of aluminium in mammary epithelial cells.

2017 ◽  
Vol 65 (3) ◽  
pp. 366-381
Author(s):  
Tulay Bakirel ◽  
Fulya Ustun Alkan ◽  
Oya Ustuner ◽  
Suzan Çinar ◽  
Ceren Anlas ◽  
...  

Currently, there is a growing interest in combining anticancer drugs with the aim to improve outcome in patients suffering from tumours and reduce the long-term toxicity associated with the current standard of treatment. In this study, we evaluated the possible role of deracoxib against the toxicity of doxorubicin on normal canine mammary epithelial cells. The effect of deracoxib and doxorubicin combination on cell viability was determined by MTT assay. Apoptosis was characterised by flow cytometry. Cell nitrite concentrations were measured with the Griess reaction. Deracoxib (50 and 100 μM) treatment decreased the cytotoxic action of doxorubicin at 0.9 μM in the cells, from 33.63% to 13.4% and 25.82%, respectively. Our results also showed that the reverse effect of deracoxib on doxorubicin-induced cytotoxic activity in the cells was associated with a marked (3.04- to 3.57-fold) decrease in apoptosis. In additional studies identifying the mechanism of the observed effect, deracoxib exhibited an activity to prevent doxorubicin-mediated overproduction of nitric oxide in the cells. Our in vitro study results indicate that deracoxib (50 and 100 μM) can be beneficial in protecting normal cells from the toxic effect of doxorubicin in conjunction with apoptosis by the modulation of nitric oxide production.


2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


2012 ◽  
Vol 32 (3) ◽  
pp. 233-243 ◽  
Author(s):  
André-Pascal Sappino ◽  
Raphaële Buser ◽  
Laurence Lesne ◽  
Stefania Gimelli ◽  
Frédérique Béna ◽  
...  

2003 ◽  
Vol 259 (2) ◽  
pp. 241-257 ◽  
Author(s):  
Anne Chotteau-Lelievre ◽  
Roberto Montesano ◽  
Jesus Soriano ◽  
Priscilla Soulie ◽  
Xavier Desbiens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document