scholarly journals Biological Characteristics and Osteogenic Differentiation of Ovine Bone Marrow Derived Mesenchymal Stem Cells Stimulated with FGF-2 and BMP-2

2020 ◽  
Vol 21 (24) ◽  
pp. 9726
Author(s):  
Sandra Gromolak ◽  
Agnieszka Krawczenko ◽  
Agnieszka Antończyk ◽  
Krzysztof Buczak ◽  
Zdzisław Kiełbowicz ◽  
...  

Cell-based therapies using mesenchymal stem cells (MSCs) are a promising tool in bone tissue engineering. Bone regeneration with MSCs involves a series of molecular processes leading to the activation of the osteoinductive cascade supported by bioactive factors, including fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2). In this study, we examined the biological characteristics and osteogenic differentiation potential of sheep bone marrow MSCs (BM-MSCs) treated with 20 ng/mL of FGF-2 and 100 ng/mL BMP-2 in vitro. The biological properties of osteogenic-induced BM-MSCs were investigated by assessing their morphology, proliferation, phenotype, and cytokine secretory profile. The osteogenic differentiation was characterized by Alizarin Red S staining, immunofluorescent staining of osteocalcin and collagen type I, and expression levels of genetic markers of osteogenesis. The results demonstrated that BM-MSCs treated with FGF-2 and BMP-2 maintained their primary MSC properties and improved their osteogenic differentiation capacity, as confirmed by increased expression of osteocalcin and collagen type I and upregulation of osteogenic-related gene markers BMP-2, Runx2, osterix, collagen type I, osteocalcin, and osteopontin. Furthermore, sheep BM-MSCs produced a variety of bioactive factors involved in osteogenesis, and supplementation of the culture medium with FGF-2 and BMP-2 affected the secretome profile of the cells. The results suggest that sheep osteogenic-induced BM-MSCs may be used as a cellular therapy to study bone repair in the preclinical large animal model.

2021 ◽  
Vol 22 (24) ◽  
pp. 13458
Author(s):  
Ragda Saleem ◽  
Samih Mohamed-Ahmed ◽  
Rammah Elnour ◽  
Ellen Berggreen ◽  
Kamal Mustafa ◽  
...  

Oxidative stress from high levels of intracellular reactive oxygen species (ROS) has been linked to various bone diseases. Previous studies indicate that mesenchymal stem cells (MSC) secrete bioactive factors (conditioned medium (MSC-CM)) that have antioxidant effects. However, the antioxidant role of MSC-CM on osteogenesis has not been fully studied. We aimed to identify antioxidant proteins in MSC-CM using mass spectrometry-based proteomics and to explore their effects on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSC) exposed to oxidative stress induced by hydrogen peroxide (H2O2). Our analysis revealed that MSC-CM is comprised of antioxidant proteins that are involved in several biological processes, including negative regulation of apoptosis and positive regulation of cell proliferation. Then, hBMSC exposed to H2O2 were treated with MSC-CM, and the effects on their osteogenic differentiation were evaluated. MSC-CM restored H2O2-induced damage to hBMSC by increasing the antioxidant enzyme-SOD production and the mRNA expression level of the anti-apoptotic BCL-2. A decrease in ROS production and cellular apoptosis was also shown. MSC-CM also modulated mRNA expression levels of osteogenesis-related genes, runt-related transcription factor 2, collagen type I, bone morphogenic protein 2, and osteopontin. Furthermore, collagen type I protein secretion, alkaline phosphatase activity, and in vitro mineralization were increased. These results indicate that MSC-CM contains several proteins with antioxidant and anti-apoptotic properties that restored the impaired hBMSC osteogenic differentiation associated with oxidative stress.


2016 ◽  
Vol 38 (1) ◽  
pp. 319-329 ◽  
Author(s):  
Yulei Gao ◽  
Yinquan Zhang ◽  
Yanghu Lu ◽  
Yi Wang ◽  
Xingrui Kou ◽  
...  

Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1) expression in bone marrow-derived mesenchymal stem cells (MSCs) on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA) against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218) of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.


2010 ◽  
Vol 12 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Maciej Tarnowski ◽  
Anna Szydło ◽  
Jacek Anioł ◽  
Halina Koryciak-Komarska ◽  
Marta Lesiak ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Na Li ◽  
Min Zhang ◽  
Gregor P. C. Drummen ◽  
Yu Zhao ◽  
Yin Fen Tan ◽  
...  

Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2020 ◽  
Author(s):  
Sangeetha Kannan ◽  
Jyotirmoy Ghosh ◽  
Sujoy K. Dhara

AbstractMultipotent porcine mesenchymal stem cells (pMSC) are indispensable for research and therapeutic use. Derivation and culture media might affect the selection of MSC subpopulation and thus the differentiation potential of cells. In this study we evaluated the effects of αMEM, aDMEM, M199, αMEM/M199, aDMEM/M199 and αMEM/aDMEM media on porcine bone marrow MSC derivation; pre-differentiation expression of ALP, COL1A1, SPP1 and BGLAP osteogenic marker genes at passage 5 and 10 pMSC; and differentiation potential of passage 5 pMSC. Morphological changes and matrix formation in osteogenic cells were evaluated by microscopical examination and calcium deposit in osteocytes was confirmed by Alizarin Red S staining. Results indicated media independent selection of different bone marrow MSC subpopulations with different surface marker gene expressions. Many pMSC subpopulations in different media had CD14+ expressing cells. We also observed basal media dependent changes in osteogenic markers expression and differentiation potential of pMSC. The αMEM/aDMEM media grown pMSC showed best osteogenic differentiation potential. We thus recommended the testing of αMEM/aDMEM mixed media in other species for pre-differentiation MSC culture that are intended for better osteogenic differentiation.SummaryPre-differentiation basal media influence osteogenic differentiation potential of mesenchymal stem cells (MSC). Among the tested media, αMEM/aDMEM was the best for pre-differentiation porcine MSC culture intending to use in osteogenesis.


Sign in / Sign up

Export Citation Format

Share Document