scholarly journals Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth

2020 ◽  
Vol 22 (1) ◽  
pp. 306
Author(s):  
Daniel J. Owens ◽  
Julien Messéant ◽  
Sophie Moog ◽  
Mark Viggars ◽  
Arnaud Ferry ◽  
...  

Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.

2020 ◽  
Author(s):  
Daniel J. Owens ◽  
Julien Messéant ◽  
Sophie Moog ◽  
Mark Viggars ◽  
Arnaud Ferry ◽  
...  

AbstractBackgroundLaminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that impair skeletal muscle growth may contribute to the disease severity.MethodsWe used human muscle stem cells (MuSCs) carrying 4 different LMNA mutations and two mouse models of muscle laminopathies, representing a spectrum of disease severity, to investigate the ability of skeletal muscle to differentiate and to hypertrophy in response to mechanical challenges. We extended these finding to individuals with LMNA-related muscular dystrophy using muscle biopsies.ResultsIn vitro, we observe impaired myogenic differentiation with disorganized cadherin/β catenin adhesion complexes in MuSCs carrying LMNA-CMD. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective accretion of activated MuSCs, defective protein synthesis and defective remodeling of the neuro-muscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the Yes-Associated Protein (YAP), a key sensor and mediator of mechanical cues. We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely-related EDMD models.ConclusionsCombining studies in vitro, in vivo and patient samples, we find that LMNA-CMD mutations interfere with mechano-signaling pathways in skeletal muscle, implicating defective skeletal muscle growth as a pathogenic contributor for the severity of LMNA-related muscular dystrophy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nana Takenaka-Ninagawa ◽  
Jinsol Kim ◽  
Mingming Zhao ◽  
Masae Sato ◽  
Tatsuya Jonouchi ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. Methods To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). Results All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1549 ◽  
Author(s):  
Cheng-long Jin ◽  
Jin-ling Ye ◽  
Jinzeng Yang ◽  
Chun-qi Gao ◽  
Hui-chao Yan ◽  
...  

As the first limiting amino acid, lysine (Lys) has been thought to promote muscle fiber hypertrophy by increasing protein synthesis. However, the functions of Lys seem far more complex than that. Despite the fact that satellite cells (SCs) play an important role in skeletal muscle growth, the communication between Lys and SCs remains unclear. In this study, we investigated whether SCs participate directly in Lys-induced skeletal muscle growth and whether the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated both in vivo and in vitro to mediate SC functions in response to Lys supplementation. Subsequently, the skeletal muscle growth of piglets was controlled by dietary Lys supplementation. Isobaric tag for relative and absolute quantitation (iTRAQ) analysis showed activated SCs were required for longissimus dorsi muscle growth, and this effect was accompanied by mTORC1 pathway upregulation. Furthermore, SC proliferation was governed by medium Lys concentrations, and the mTORC1 pathway was significantly enhanced in vitro. After verifying that rapamycin inhibits the mTORC1 pathway and suppresses SC proliferation, we conclude that Lys is not only a molecular building block for protein synthesis but also a signal that activates SCs to manipulate muscle growth via the mTORC1 pathway.


2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Brian Carson ◽  
Robert Davies ◽  
Joseph Bass ◽  
Catherine Norton ◽  
Bijal Patel ◽  
...  

Objective The aim of this research was the development and validation of a translational model for the evaluation of exercise and nutrient stimulated muscle protein synthesis (MPS). To achieve this overall aim, three primary objectives had to be realised: (i) Development of an in vitro skeletal muscle cell bioassay to measure muscle growth and MPS; (ii) Development of an ex vivo model to evaluate the humoral effect on MPS in response to nutrient feeding and exercise; (iii) Use of a stable isotope technique to evaluate MPS in response to nutrient feeding and exercise in vivo. Methods To develop a novel in vitro skeletal muscle cell bioassay to measure muscle growth and MPS, C2C12 myoblasts were proliferated and subsequently differentiated to myotubes over 8 days in DMEM (2% HS). Changes in cell behavior and adhesion properties were monitored by measuring impedance via interdigitated microelectrodes using the xCELLigence system. MPS was measured by puromycin incorporation using the SUnSET technique, intracellular signalling measured by western blot, and myotube thickness by microscopy. To demonstrate the capability to monitor nutrient regulation of muscle growth, media was conditioned with a known potent regulator of MPS (leucine) in a dose response experiment (0.20 - 2.0 mM). To establish the ability of the bioassay to measure the humoral effect of MPS in response to feeding and exercise, media was conditioned by ex vivo human serum from fasted, rested, fed (protein and isonitrogenous non-essential amino acid (NEAA) control)  and post-exercise conditions. To evaluate MPS in response to nutrient feeding and exercise in vivo, acute MPS (5 h) was assessed by measuring stable isotope deuterium oxide (D2O) incorporation into m. vastus lateralis skeletal muscle following consumption of either a Whey Protein (WP) or an isonitrogenous NEAA control combined with resistance exercise in resistance trained males. Results In vitro experiments observed a dose-response effect with a 32 % increase in cell index and a 27 % increase in cell thickness after 2 h in the presence of 2.0 mM leucine when compared with control myotubes. Ex vivo serum following ingestion of NEAA had no effect on protein signalling or MPS whereas WP fed serum significantly increased mTOR, P70S6K and 4E-BP1 phosphorylation (p<0.01, p<0.05) compared to fasted serum. Furthermore, the effect of WP fed serum on protein signalling and MPS was significantly increased (p<0.01, p<0.05) compared to NEAA fed serum.  Ex vivo human serum following resistance exercise was also increased MPS (29 %) and phosphorylation of mTOR (6 %), p70S6K (12 %) and 4EBP1 (7 %), compared with resting serum. These ex vivo/in vitro findings translated to the in vivo model as myofibrillar fractional synthetic rates (myoFSR) (Basal 0.068±0.002%h-1 vs. WP 0.084±0.006 %h-1, p=0.033) and absolute synthetic rates (ASR) (Basal 10.34±1.01 vs. WP 13.18±0.71 g.day-1, p=0.026) were increased from basal levels only when resistance exercise was combined with WP ingestion and not the NEAA control (NEAA MPS 0.072±0.004%h-1, NEAA ASR 10.23±0.80 g.day-1).  Thus, ingestion of WP in combination with resistance training augments acute MPS responses in resistance trained young men. Conclusions We have developed a translational model of muscle protein synthetic bioactivity using in vitro, ex vivo and in vivo methodologies. We have shown that we can impact MPS in vitro using ex vivo human serum to condition media, that MPS in vitro is differentially regulated by ex vivo serum containing bioactive WP compared to a non-bioactive NEAA control, and that this tranlates for resistance exercise combined with WP in humans when MyoFSR is measured using stable isotope technology.  These experiments demonstrate that ex vivo/in vitro experiments translate to the in vivo model and these methods can be used to inform both exercise and nutrient human interventions. 


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean M. Buchanan ◽  
Feodor D. Price ◽  
Alessandra Castiglioni ◽  
Amanda Wagner Gee ◽  
Joel Schneider ◽  
...  

Abstract Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


2019 ◽  
Author(s):  
◽  
Michael Everette Nance

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Duchenne muscular dystrophy (DMD) is a lethal muscular dystrophy resulting from functional loss of the dystrophin protein, a critical sub-sarcolemmal protein involved in membrane stability. While reparative dysfunction is thought to be a critical determinant of disease progression in humans, regeneration is not significantly impaired in the murine muscular dystrophy (mdx) model. Furthermore, it is not well understood if reparative dysfunction is related to inherent defects in stem cells or chronic alterations in the muscle environment due to disease related remodeling. To address these observed discrepancies, we adapted a whole muscle transplant model to study the in vivo regeneration of intact pieces of skeletal muscle from normal and dystrophic dogs (cDMD), a physiological and clinically relevant model to humans. Regeneration in cDMD muscle grafts was significantly attenuated compared to normal and predisposed to the development of skeletal muscle tumors. We used an adeno-associated virus (AAV) expressing a micro-dystrophin protein to specifically rescue the muscle environment by preventing fiber damage while retaining dystrophin-null SCs. AAV.micro-dystrophin rescued the environment by improving fibrosis, stiffness, and fiber orientation, which significantly improved early muscle regeneration but not late regeneration (2 greater than and less than 4 months post-transplant) via enhancing muscle stem cells differentiation. We next developed Cre- and CRISPR-cas9 gene editing strategies to test the ability of AAV serotype 9 to transduce and treat the genetic mutation in muscle stem cells. We observed efficient SC transduction when used as a single vector expressing Cre. Dual-vector CRISPR-cas9 SC transduction was inefficient and likely related to the requirement for two vectors, promoter usage, and mechanistic differences between Cre-recombination and CRISPR genome editing.


2017 ◽  
Vol 42 (6) ◽  
pp. 621-629 ◽  
Author(s):  
Timothy M. Moore ◽  
Xavier M. Mortensen ◽  
Conrad K. Ashby ◽  
Alexander M. Harris ◽  
Karson J. Kump ◽  
...  

Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.


2017 ◽  
Vol 217 (2) ◽  
pp. 685-700 ◽  
Author(s):  
Voahangy Randrianarison-Huetz ◽  
Aikaterini Papaefthymiou ◽  
Gaëlle Herledan ◽  
Chiara Noviello ◽  
Ulduz Faradova ◽  
...  

Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here, we show that serum response factor (Srf) is needed for optimal SC-mediated hypertrophic growth. We identified Srf as a master regulator of SC fusion required in both fusion partners, whereas it was dispensable for SC proliferation and differentiation. We show that SC-specific Srf deletion leads to impaired actin cytoskeleton and report the existence of finger-like actin–based protrusions at fusion sites in vertebrates that were notoriously absent in fusion-defective myoblasts lacking Srf. Restoration of a polymerized actin network by overexpression of an α-actin isoform in Srf mutant SCs rescued their fusion with a control cell in vitro and in vivo and reestablished overload-induced muscle growth. These findings demonstrate the importance of Srf in controlling the organization of actin cytoskeleton and actin-based protrusions for myoblast fusion in mammals and its requirement to achieve efficient hypertrophic myofiber growth.


Sign in / Sign up

Export Citation Format

Share Document