scholarly journals Intermittent Hypoxic Conditioning Rescues Cognition and Mitochondrial Bioenergetic Profile in the Triple Transgenic Mouse Model of Alzheimer’s Disease

2021 ◽  
Vol 22 (1) ◽  
pp. 461
Author(s):  
Sónia C. Correia ◽  
Nuno J. Machado ◽  
Marco G. Alves ◽  
Pedro F. Oliveira ◽  
Paula I. Moreira

The lack of effective disease-modifying therapeutics to tackle Alzheimer’s disease (AD) is unsettling considering the actual prevalence of this devastating neurodegenerative disorder worldwide. Intermittent hypoxic conditioning (IHC) is a powerful non-pharmacological procedure known to enhance brain resilience. In this context, the aim of the present study was to investigate the potential long-term protective impact of IHC against AD-related phenotype, putting a special focus on cognition and mitochondrial bioenergetics and dynamics. For this purpose, six-month-old male triple transgenic AD mice (3×Tg-AD) were submitted to an IHC protocol for two weeks and the behavioral assessment was performed at 8.5 months of age, while the sacrifice of mice occurred at nine months of age and their brains were removed for the remaining analyses. Interestingly, IHC was able to prevent anxiety-like behavior and memory and learning deficits and significantly reduced brain cortical levels of amyloid-β (Aβ) in 3×Tg-AD mice. Concerning brain energy metabolism, IHC caused a significant increase in brain cortical levels of glucose and a robust improvement of the mitochondrial bioenergetic profile in 3×Tg-AD mice, as mirrored by the significant increase in mitochondrial membrane potential (ΔΨm) and respiratory control ratio (RCR). Notably, the improvement of mitochondrial bioenergetics seems to result from an adaptative coordination of the distinct but intertwined aspects of the mitochondrial quality control axis. Particularly, our results indicate that IHC favors mitochondrial fusion and promotes mitochondrial biogenesis and transport and mitophagy in the brain cortex of 3×Tg-AD mice. Lastly, IHC also induced a marked reduction in synaptosomal-associated protein 25 kDa (SNAP-25) levels and a significant increase in both glutamate and GABA levels in the brain cortex of 3×Tg-AD mice, suggesting a remodeling of the synaptic microenvironment. Overall, these results demonstrate the effectiveness of the IHC paradigm in forestalling the AD-related phenotype in the 3×Tg-AD mouse model, offering new insights to AD therapy and forcing a rethink concerning the potential value of non-pharmacological interventions in clinical practice.

2014 ◽  
Vol 41 (3) ◽  
pp. 845-854 ◽  
Author(s):  
Carla Cadena-del-Castillo ◽  
Christian Valdes-Quezada ◽  
Francisco Carmona-Aldana ◽  
Clorinda Arias ◽  
Federico Bermúdez-Rattoni ◽  
...  

2020 ◽  
Vol 35 ◽  
pp. 153331752095304
Author(s):  
Mark Maskery ◽  
Elizabeth Mary Goulding ◽  
Simon Gengler ◽  
Josefine Ulrikke Melchiorsen ◽  
Mette Marie Rosenkilde ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder for which there is no cure. Here, we test a dual GLP-1/GIP receptor agonist (DA4-JC) that has a cell penetrating sequence added to enhance blood-brain barrier penetration. We show in a receptor activity study that DA4-JC has balanced activity on both GLP-1 and GIP receptors but not on GLP-2 or Glucagon receptors. A dose-response study in the APP/PS1 mouse model of AD showed both a dose-dependent drug effect on the inflammation response and the reduction of amyloid plaques in the brain. When comparing DA4-JC with the GLP-1 analogue liraglutide at equal doses of 10nmol/kg bw ip. once-daily for 8 weeks, DA4-JC was more effective in reversing memory loss, enhancing synaptic plasticity (LTP) in the hippocampus, reducing amyloid plaques and lowering pro-inflammatory cytokine levels in the brain. The results suggest that DA4-JC may be a novel treatment for AD.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1605
Author(s):  
Anna Escrig ◽  
Amalia Molinero ◽  
Brenda Méndez ◽  
Mercedes Giralt ◽  
Gemma Comes ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes the most prevalent dementia in the elderly people. Obesity and insulin resistance, which may cause major health problems per se, are risk factors for AD, and cytokines such as interleukin-6 (IL-6) have a role in these conditions. IL-6 can signal either through a membrane receptor or by trans-signaling, which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). We have addressed the possibility that blocking IL-6 trans-signaling in the brain could have an effect in the triple transgenic 3xTg-AD mouse model of AD and/or in obesity progression, by crossing 3xTg-AD mice with GFAP-sgp130Fc mice. To serve as control groups, GFAP-sgp130Fc mice were also crossed with C57BL/6JOlaHsd mice. Seventeen-month-old mice were fed a control diet (18% kcal from fat) and a high-fat diet (HFD; 58.4% kcal from fat). In our experimental conditions, the 3xTg-AD model showed a mild amyloid phenotype, which nevertheless altered the control of body weight and related endocrine and metabolic factors, suggestive of a hypermetabolic state. The inhibition of IL-6 trans-signaling modulated some of these traits in both 3xTg-AD and control mice, particularly during HFD, and in a sex-dependent manner. These experiments provide evidence of IL-6 trans-signaling playing a role in the CNS of a mouse model of AD.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


2021 ◽  
Vol 22 (22) ◽  
pp. 12256
Author(s):  
Estibaliz González de San Román ◽  
Alberto Llorente-Ovejero ◽  
Jonatan Martínez-Gardeazabal ◽  
Marta Moreno-Rodríguez ◽  
Lydia Giménez-Llort ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in aging populations. Recently, the regulation of neurolipid-mediated signaling and cerebral lipid species was shown in AD patients. The triple transgenic mouse model (3xTg-AD), harboring βAPPSwe, PS1M146V, and tauP301L transgenes, mimics many critical aspects of AD neuropathology and progressively develops neuropathological markers. Thus, in the present study, 3xTg-AD mice have been used to test the involvement of the neurolipid-based signaling by endocannabinoids (eCB), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) in relation to the lipid deregulation. [35S]GTPγS autoradiography was used in the presence of specific agonists WIN55,212-2, LPA and CYM5442, to measure the activity mediated by CB1, LPA1, and S1P1 Gi/0 coupled receptors, respectively. Consecutive slides were used to analyze the relative intensities of multiple lipid species by MALDI Mass spectrometry imaging (MSI) with microscopic anatomical resolution. The quantitative analysis of the astrocyte population was performed by immunohistochemistry. CB1 receptor activity was decreased in the amygdala and motor cortex of 3xTg-AD mice, but LPA1 activity was increased in the corpus callosum, motor cortex, hippocampal CA1 area, and striatum. Conversely, S1P1 activity was reduced in hippocampal areas. Moreover, the observed modifications on PC, PA, SM, and PI intensities in different brain areas depend on their fatty acid composition, including decrease of polyunsaturated fatty acid (PUFA) phospholipids and increase of species containing saturated fatty acids (SFA). The regulation of some lipid species in specific brain regions together with the modulation of the eCB, LPA, and S1P signaling in 3xTg-AD mice indicate a neuroprotective adaptation to improve neurotransmission, relieve the myelination dysfunction, and to attenuate astrocyte-mediated neuroinflammation. These results could contribute to identify new therapeutic strategies based on the regulation of the lipid signaling in familial AD patients.


2014 ◽  
Vol 4 (4) ◽  
pp. 232-238 ◽  
Author(s):  
Selvaraju Subash ◽  
Musthafa Mohamed Essa ◽  
Abdullah Al-Asmi ◽  
Samir Al-Adawi ◽  
Ragini Vaishnav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document