Electromagnetic field in Alzheimer’s disease: a literature review of recent preclinical and clinical studies

2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.

2021 ◽  
Vol 13 (20) ◽  
pp. 1767-1794
Author(s):  
Nibedita Ghosh ◽  
Lal Mohan Kundu

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, for which blocking the early steps of extracellular misfolded amyloid-β (Aβ) aggregation is a promising therapeutic approach. However, the pathological features of AD progression include the accumulation of intracellular tau protein, membrane-catalyzed cell death and the abnormal deposition of Aβ. Here, we focus on anti-amyloid breaker peptides derived from the Aβ sequence and non-Aβ-based peptides containing both natural and modified amino acids. Critical aspects of the breaker peptides include N-methylation, conformational restriction through cyclization, incorporation of unnatural amino acid, fluorinated molecules, polymeric nanoparticles and PEGylation. This review confers a general idea of such breaker peptides with in vitro and in vivo studies, which may advance our understanding of AD pathology and develop an effective treatment strategy against AD.


2019 ◽  
Vol 356 ◽  
pp. 18-40 ◽  
Author(s):  
Priyal Barai ◽  
Nisith Raval ◽  
Sanjeev Acharya ◽  
Ankit Borisa ◽  
Hardik Bhatt ◽  
...  

2013 ◽  
Vol 4 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Alaa H. Abuznait ◽  
Hisham Qosa ◽  
Belnaser A. Busnena ◽  
Khalid A. El Sayed ◽  
Amal Kaddoumi

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tan Sook Ling ◽  
Shanthini Chandrasegaran ◽  
Low Zhi Xuan ◽  
Tong Li Suan ◽  
Elaine Elaine ◽  
...  

Alzheimer’s disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer’s disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer’s disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer’s disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer’s disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer’s disease as well as its challenges.


2021 ◽  
Vol 22 (23) ◽  
pp. 13136
Author(s):  
Han Seok Koh ◽  
SangJoon Lee ◽  
Hyo Jin Lee ◽  
Jae-Woong Min ◽  
Takeshi Iwatsubo ◽  
...  

Alzheimer’s disease (AD) is a form of dementia characterized by progressive memory decline and cognitive dysfunction. With only one FDA-approved therapy, effective treatment strategies for AD are urgently needed. In this study, we found that microRNA-485-3p (miR-485-3p) was overexpressed in the brain tissues, cerebrospinal fluid, and plasma of patients with AD, and its antisense oligonucleotide (ASO) reduced Aβ plaque accumulation, tau pathology development, neuroinflammation, and cognitive decline in a transgenic mouse model of AD. Mechanistically, miR-485-3p ASO enhanced Aβ clearance via CD36-mediated phagocytosis of Aβ in vitro and in vivo. Furthermore, miR-485-3p ASO administration reduced apoptosis, thereby effectively decreasing truncated tau levels. Moreover, miR-485-3p ASO treatment reduced secretion of proinflammatory cytokines, including IL-1β and TNF-α, and eventually relieved cognitive impairment. Collectively, our findings suggest that miR-485-3p is a useful biomarker of the inflammatory pathophysiology of AD and that miR-485-3p ASO represents a potential therapeutic candidate for managing AD pathology and cognitive decline.


2020 ◽  
Vol 21 (9) ◽  
pp. 3270
Author(s):  
Ruth Maron ◽  
Gad Armony ◽  
Michael Tsoory ◽  
Meir Wilchek ◽  
Dan Frenkel ◽  
...  

The two major proteins involved in Alzheimer’s disease (AD) are the amyloid precursor protein (APP) and Tau. Here, we demonstrate that these two proteins can bind to each other. Four possible peptides APP1 (390–412), APP2 (713–730), Tau1 (19–34) and Tau2 (331–348), were predicted to be involved in this interaction, with actual binding confirmed for APP1 and Tau1. In vivo studies were performed in an Alzheimer Disease animal model—APP double transgenic (Tg) 5xFAD—as well as in 5xFAD crossed with Tau transgenic 5xFADXTau (FT), which exhibit declined cognitive reduction at four months of age. Nasal administration of APP1 and Tau1 mixture, three times a week for four or five months, reduced amyloid plaque burden as well as the level of soluble Aβ 1–42 in the brain. The treatment prevented the deterioration of cognitive functions when initiated at the age of three months, before cognitive deficiency was evident, and also at the age of six months, when such deficiencies are already observed, leading to a full regain of cognitive function.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Malcolm Roberts ◽  
Ioanna Sevastou ◽  
Yoichi Imaizumi ◽  
Kavita Mistry ◽  
Sonia Talma ◽  
...  

AbstractTau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer’s disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species (“seeds”) containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Valeriy G. Ostapchenko ◽  
Jonatan Snir ◽  
Mojmir Suchy ◽  
Jue Fan ◽  
M. Rebecca Cobb ◽  
...  

Apoptosis is a feature of stroke and Alzheimer’s disease (AD), yet there is no accepted method to detect or follow apoptosis in the brain in vivo. We developed a bifunctional tracer [68Ga]Ga-TC3-OGDOTA containing a cell-penetrating peptide separated from fluorescent Oregon Green and 68Ga-bound labels by the caspase-3 recognition peptide DEVD. We hypothesized that this design would allow [68Ga]Ga-TC3-OGDOTA to accumulate in apoptotic cells. In vitro, Ga-TC3-OGDOTA labeled apoptotic neurons following exposure to camptothecin, oxygen-glucose deprivation, and β-amyloid oligomers. In vivo, PET showed accumulation of [68Ga]Ga-TC3-OGDOTA in the brain of mouse models of stroke or AD. Optical clearing revealed colocalization of [68Ga]Ga-TC3-OGDOTA and cleaved caspase-3 in brain cells. In stroke, [68Ga]Ga-TC3-OGDOTA accumulated in neurons in the penumbra area, whereas in AD mice [68Ga]Ga-TC3-OGDOTA was found in single cells in the forebrain and diffusely around amyloid plaques. In summary, this bifunctional tracer is selectively associated with apoptotic cells in vitro and in vivo in brain disease models and represents a novel tool for apoptosis detection that can be used in neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document