scholarly journals Hyperglycemic Condition Causes Pro-Inflammatory and Permeability Alterations Associated with Monocyte Recruitment and Deregulated NFκB/PPARγ Pathways on Cerebral Endothelial Cells: Evidence for Polyphenols Uptake and Protective Effect

2021 ◽  
Vol 22 (3) ◽  
pp. 1385
Author(s):  
Janice Taïlé ◽  
Jessica Patché ◽  
Bryan Veeren ◽  
Marie-Paule Gonthier

Hyperglycemia alters the function of cerebral endothelial cells from the blood-brain barrier, increasing the risk of cerebrovascular complications during diabetes. This study evaluated the protective effect of polyphenols on inflammatory and permeability markers on bEnd3 cerebral endothelial cells exposed to high glucose concentration. Results show that hyperglycemic condition increased nuclear factor kappa B (NFκB) activity, deregulated the expression of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10) and endothelial-leukocyte adhesion molecule (E-selectin) genes, raised MCP-1 secretion and elevated monocyte adhesion and transendothelial migration. High glucose decreased occludin, claudin-5, zona occludens-1 (ZO-1) and zona occludens-2 (ZO-2) tight junctions production and altered the endothelial permeability. Characterized polyphenolic extracts from the French medicinal plants Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa and Terminalia bentzoe, and their major polyphenols quercetin, caffeic, chlorogenic and gallic acids limited the pro-inflammatory and permeability alterations caused by high glucose. Peroxisome proliferator-activated receptor gamma (PPARγ) agonist also attenuated these damages while PPARγ antagonist aggravated them, suggesting PPARγ protective action. Interestingly, polyphenols improved PPARγ gene expression lowered by high glucose. Moreover, polyphenols were detected at the intracellular level or membrane-bound to cells, with evidence for breast cancer resistance protein (BCRP) efflux transporter role. Altogether, these findings emphasize the ability of polyphenols to protect cerebral endothelial cells in hyperglycemic condition and their relevance for pharmacological strategies aiming to limit cerebrovascular disorders in diabetes.

Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 573 ◽  
Author(s):  
Janice Taïlé ◽  
Angélique Arcambal ◽  
Patricia Clerc ◽  
Anne Gauvin-Bialecki ◽  
Marie-Paule Gonthier

Blood-brain barrier endothelial cells are the main targets of diabetes-related hyperglycemia that alters endothelial functions and brain homeostasis. Hyperglycemia-mediated oxidative stress may play a causal role. This study evaluated the protective effects of characterized polyphenol-rich medicinal plant extracts on redox, inflammatory and vasoactive markers on murine bEnd3 cerebral endothelial cells exposed to high glucose concentration. The results show that hyperglycemic condition promoted oxidative stress through increased reactive oxygen species (ROS) levels, deregulated antioxidant superoxide dismutase (SOD) activity, and altered expression of genes encoding Cu/ZnSOD, MnSOD, catalase, glutathione peroxidase (GPx), heme oxygenase-1 (HO-1), NADPH oxidase 4 (Nox4), and nuclear factor erythroid 2-related factor 2 (Nrf2) redox factors. Cell preconditioning with inhibitors of signaling pathways highlights a causal role of nuclear factor kappa B (NFκB), while a protective action of AMP-activated protein kinase (AMPK) on redox changes. The hyperglycemic condition induced a pro-inflammatory response by elevating NFκB gene expression and interleukin-6 (IL-6) secretion, and deregulated the production of endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) vasoactive markers. Importantly, polyphenolic extracts from Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa, and Terminalia bentzoe French medicinal plants, counteracted high glucose deleterious effects by exhibiting antioxidant and anti-inflammatory properties. In an innovative way, quercetin, caffeic, chlorogenic and gallic acids identified as predominant plant polyphenols, and six related circulating metabolites were found to exert similar benefits. Collectively, these findings demonstrate polyphenol protective action on cerebral endothelial cells during hyperglycemic condition.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3372 ◽  
Author(s):  
Yan-Hui Shen ◽  
Li-Ying Wang ◽  
Bao-Bao Zhang ◽  
Qi-Ming Hu ◽  
Pu Wang ◽  
...  

Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V–FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.


2016 ◽  
Vol 71 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Mi Hwa Park ◽  
Jae-Won Ju ◽  
Mihyang Kim ◽  
Ji-Sook Han

AbstractEndothelial cell dysfunction is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of daidzein, a natural isoflavonoid, against high-glucose–induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced oxidative stress in the endothelial cells, against which daidzein protected the cells as demonstrated by significantly increased cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS) generation, and indirect nitric oxide levels induced by the high glucose treatment were significantly reduced in the presence of daidzein (0.02–0.1 mM) in a dose-dependent manner. High glucose levels induced the overexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB proteins in HUVECs, which was suppressed by treatment with 0.04 mM daidzein. These findings indicate the potential of daidzein to reduce high glucose-induced oxidative stress.


2008 ◽  
Vol 22 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Ludovica Piconi ◽  
Maddalena Corgnali ◽  
Roberto Da Ros ◽  
Roberta Assaloni ◽  
Teodoro Piliego ◽  
...  

2016 ◽  
Vol 39 (3) ◽  
pp. 847-859 ◽  
Author(s):  
Jie Li ◽  
Junfeng Li ◽  
Tingting Wei ◽  
Junhua Li

Background/Aims: To investigate the effects of miR-137 on high glucose (HG)-induced vascular injury, and to establish the mechanism underlying these effects. Methods: Human umbilical vein endothelial cells (HUVECs) were transfected with miR-137 inhibitor or mimic, and then treated with normal or high glucose. Cell viability and apoptosis were detected by using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected by fluorescent probe (DCFH-DA), thiobarbituric acid reaction, and the nitroblue tetrazolium assay, respectively. The mRNA and protein expressions of AMPKα1 were determined by qRT-PCR and Western blotting. Results: Down-regulation of miR-137 dramatically reverted HG-induced decreases in cell viability and SOD levels and increases in apoptosis, ROS and MDA levels. Moreover, bioinformatics analysis predicted that the AMPKα1 was a potential target gene of miR-137. Luciferase reporter assay demonstrated that miR-137 could directly target AMPKα1. AMPKα1 overexpression had the similar effect as miR-137 inhibition. Down-regulation of AMPKα1 in HUVECs transfected with miR-137 inhibitor partially reversed the protective effect of miR-137 inhibition on HG-induced oxidative stress in HUVECs. Conclusion: Down-regulation of miR-137 ameliorates HG-induced injury in HUVECs by overexpression of AMPKα1, leading to increasing cellular reductive reactions and decreasing oxidative stress. These results provide further evidence for protective effect of miR-137 inhibition on HG-induced vascular injury.


2021 ◽  
pp. 1-10
Author(s):  
Jiankun Cui ◽  
Bo Zhang ◽  
Min Gao ◽  
Baohai Liu ◽  
Cong Dai ◽  
...  

Endothelial dysfunction plays a central role in the patho­genesis of diabetic vascular complications. 2,3,5,4′-tetra­hydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the roots of Polygonum multiflorum Thunb, has been shown to have strong antioxidant and antiapoptotic activities. In the present study, we investigated the protective effect of TSG on apoptosis induced by high glucose in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms. Our data demonstrated that TSG significantly reversed the high glucose-induced decrease in cell viability, suppressed high glucose-induced generation of intracellular reactive oxygen species (ROS), the activity of caspase-3, and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, we found that TSG not only increased the expression of Bcl-2, while decreasing Bax expression, but also activated phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) with subsequent nitric oxide production and ultimately reduced high glucose-induced apoptosis. However, the antiapoptotic effects of TSG were abrogated by pretreatment of the cells with PI3K inhibitor (LY294002) or eNOS inhibitor N<sup>G</sup>-L-nitro-arginine methyl ester, respectively. These results suggest that TSG inhibits high glucose-induced apoptosis in HUVECs through inhibition of ROS production, activation of the PI3K/Akt/eNOS pathway, and upregulation of the Bcl-2/Bax ratio, and thus may demonstrate significant potential for preventing diabetic cardiovascular complications.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3665
Author(s):  
Nurraihana Hamzah ◽  
Sabreena Safuan ◽  
Wan Rosli Wan Ishak

Endothelial cell dysfunction is considered to be one of the major causes of vascular complications in diabetes. Polyphenols are known as potent antioxidants that can contribute to the prevention of diabetes. Corn silk has been reported to contain polyphenols and has been used in folk medicine in China for the treatment of diabetes. The present study aims to investigate the potential protective role of the phenolic-rich fraction of corn silk (PRF) against injuries to vascular endothelial cells under high glucose conditions in vitro and in vivo. The protective effect of PRF from high glucose toxicity was investigated using human umbilical vein endothelial cells (HUVECs). The protective effect of PRF was subsequently evaluated by using in vivo methods in streptozotocin (STZ)-induced diabetic rats. Results showed that the PRF significantly reduced the cytotoxicity of glucose by restoring cell viability in a dose-dependent manner. PRF was also able to prevent the histological changes in the aorta of STZ-induced diabetic rats. Results suggested that PRF might have a beneficial effect on diabetic patients and may help to prevent the development and progression of diabetic complications such as diabetic nephropathy and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document