scholarly journals Mild Effects of Sunscreen Agents on a Marine Flatfish: Oxidative Stress, Energetic Profiles, Neurotoxicity and Behaviour in Response to Titanium Dioxide Nanoparticles and Oxybenzone

2021 ◽  
Vol 22 (4) ◽  
pp. 1567
Author(s):  
Ana Carvalhais ◽  
Bárbara Pereira ◽  
Mariangela Sabato ◽  
Rafaela Seixas ◽  
Marina Dolbeth ◽  
...  

UV filters are potentially harmful to marine organisms. Given their worldwide dissemination and the scarcity of studies on marine fish, we evaluated the toxicity of an organic (oxybenzone) and an inorganic (titanium dioxide nanoparticles) UV filter, individually and in a binary mixture, in the turbot (Scophthalmus maximus). Fish were intraperitoneally injected and a multi-level assessment was carried out 3 and 7 days later. Oxybenzone and titanium dioxide nanoparticles induced mild effects on turbot, both isolated and in mixture. Neither oxidative stress (intestine, liver and kidney) nor neurotoxicity (brain) was found. However, liver metabolic function was altered after 7 days, suggesting the impairment of the aerobic metabolism. An increased motility rate in oxybenzone treatment was the only behavioural alteration (day 7). The intestine and liver were preferentially targeted, while kidney and brain were unaffected. Both infra- and supra-additive interactions were perceived, with a toxicodynamic nature, resulting either in favourable or unfavourable toxicological outcomes, which were markedly dependent on the organ, parameter and post-injection time. The combined exposure to the UV filters did not show a consistent increment in toxicity in comparison with the isolated exposures, which is an ecologically relevant finding providing key information towards the formulation of environmentally safe sunscreen products.

2014 ◽  
Vol 60 (1) ◽  
pp. S174
Author(s):  
C.L. Charles Niño ◽  
A.E. González Esquivel ◽  
F. Jaramillo Juárez ◽  
A.R. Rincon-Sanchez

Author(s):  
Nahla S. El-Shenawy ◽  
Mohammad S. Al-Harbi ◽  
Fatimah F.E. Al hamayani

AbstractNanomaterials coating gained much concern in orthopedic implants and cosmetics. Drug combination may be a promising strategy for treating multi-factorial diseases. Titanium dioxide (TDN) nanoparticles are being widely used in many industries as well as in medicine and pharmacology. Therefore, increased human and environmental exposure can be expected, which has put TDN under toxicological scrutiny, and it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. The toxicity of titanium oxide nanoparticles (TDN) and salicylic acid (SA) separately or in combination was studied for 21 days.The liver and kidney biomarker were determined, and hormones and oxidative stress levels were detected in mice.The intraperitoneal (i.p.) injection of TDN and SA in combination had a potential toxicological effect on major organs and hormonal homeostasis of mice. TDN and SA could antagonistically interact to affect the liver and kidney functions. No synergistic damage was observed in the liver function of mice that were treated with both TDN and SA as compared to the SA group. TDN acted as a synergistic agent to SA in the case of total cholesterol and total proteins levels. SA acted as antagonistic to the effect of TDN when injected together in mice because the effect on kidney functions is less than that predicted on the basis of the additive. The effect of co-administration of SA and TDN on the following hormones; triiodothyronine, thyroxine, estradiol II and insulin various among additive, potentiation, antagonistic and no effect, respectively as compared to TDN group. The interaction of TDN and SA was also found to induce oxidative stress as indicated by the increase in lipid peroxidation (LPO) levels. The decrease in the level of the reduced glutathione in the co-treated group indicated that there were no synergistic damages. SA and TDN co-administration could induce a potential increase in LPO levels in liver, kidney, and spleen but not in heart tissue. These results have not suggested that TDN and SA have a synergistic sub-chronic toxicity in mice after i.p. administration. SA may decrease the toxicity of TDN to some degree that could be related to the potentiation chemical reaction between SA and TDN.Our results suggested that the damage observed in mice treated with TDN and SA is organ-specific and associated with hormonal homeostasis and oxidative damage.


2012 ◽  
Vol 26 (2) ◽  
pp. 351-361 ◽  
Author(s):  
Quaiser Saquib ◽  
Abdulaziz A. Al-Khedhairy ◽  
Maqsood A. Siddiqui ◽  
Faisal M. Abou-Tarboush ◽  
Ameer Azam ◽  
...  

2008 ◽  
Vol 180 (3) ◽  
pp. 222-229 ◽  
Author(s):  
Eun-Jung Park ◽  
Jongheop Yi ◽  
Kyu-Hyuck Chung ◽  
Doug-Young Ryu ◽  
Jinhee Choi ◽  
...  

2020 ◽  
Vol 317 ◽  
pp. 108966 ◽  
Author(s):  
José Antonio Pérez-Arizti ◽  
José Luis Ventura-Gallegos ◽  
Roberto Erasmo Galván Juárez ◽  
María del Pilar Ramos-Godinez ◽  
Zaira Colín-Val ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1955 ◽  
Author(s):  
Elizabeth Huerta-García ◽  
Iván Zepeda-Quiroz ◽  
Helen Sánchez-Barrera ◽  
Zaira Colín-Val ◽  
Ernesto Alfaro-Moreno ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in industry and daily life. TiO2 NPs can penetrate into the body, translocate from the lungs into the circulation and come into contact with cardiac cells. In this work, we evaluated the toxicity of TiO2 NPs on H9c2 rat cardiomyoblasts. Internalization of TiO2 NPs and their effect on cell proliferation, viability, oxidative stress and cell death were assessed, as well as cell cycle alterations. Cellular uptake of TiO2 NPs reduced metabolic activity and cell proliferation and increased oxidative stress by 19-fold measured as H2DCFDA oxidation. TiO2 NPs disrupted the plasmatic membrane integrity and decreased the mitochondrial membrane potential. These cytotoxic effects were related with changes in the distribution of cell cycle phases resulting in necrotic death and autophagy. These findings suggest that TiO2 NPs exposure represents a potential health risk, particularly in the development of cardiovascular diseases via oxidative stress and cell death.


2009 ◽  
Vol 6 (1) ◽  
pp. 17 ◽  
Author(s):  
Kunal Bhattacharya ◽  
Maria Davoren ◽  
Jens Boertz ◽  
Roel PF Schins ◽  
Eik Hoffmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document