scholarly journals Kinase CDK2 in Mammalian Meiotic Prophase I: Screening for Hetero- and Homomorphic Sex Chromosomes

2021 ◽  
Vol 22 (4) ◽  
pp. 1969
Author(s):  
Sergey Matveevsky ◽  
Tsenka Chassovnikarova ◽  
Tatiana Grishaeva ◽  
Maret Atsaeva ◽  
Vasilii Malygin ◽  
...  

Cyclin-dependent kinases (CDKs) are crucial regulators of the eukaryotic cell cycle. The critical role of CDK2 in the progression of meiosis was demonstrated in a single mammalian species, the mouse. We used immunocytochemistry to study the localization of CDK2 during meiosis in seven rodent species that possess hetero- and homomorphic male sex chromosomes. To compare the distribution of CDK2 in XY and XX male sex chromosomes, we performed multi-round immunostaining of a number of marker proteins in meiotic chromosomes of the rat and subterranean mole voles. Antibodies to the following proteins were used: RAD51, a member of the double-stranded DNA break repair machinery; MLH1, a component of the DNA mismatch repair system; and SUN1, which is involved in the connection between the meiotic telomeres and nuclear envelope, alongside the synaptic protein SYCP3 and kinetochore marker CREST. Using an enhanced protocol, we were able to assess the distribution of as many as four separate proteins in the same meiotic cell. We showed that during prophase I, CDK2 localizes to telomeric and interstitial regions of autosomes in all species investigated (rat, vole, hamster, subterranean mole voles, and mole rats). In sex bivalents following synaptic specificity, the CDK2 signals were distributed in three different modes. In the XY bivalent in the rat and mole rat, we detected numerous CDK2 signals in asynaptic regions and a single CDK2 focus on synaptic segments, similar to the mouse sex chromosomes. In the mole voles, which have unique XX sex chromosomes in males, CDK2 signals were nevertheless distributed similarly to the rat XY sex chromosomes. In the vole, sex chromosomes did not synapse, but demonstrated CDK2 signals of varying intensity, similar to the rat X and Y chromosomes. In female mole voles, the XX bivalent had CDK2 pattern similar to autosomes of all species. In the hamster, CDK2 signals were revealed in telomeric regions in the short synaptic segment of the sex bivalent. We found that CDK2 signals colocalize with SUN1 and MLH1 signals in meiotic chromosomes in rats and mole voles, similar to the mouse. The difference in CDK2 manifestation at the prophase I sex chromosomes can be considered an example of the rapid chromosome evolution in mammals.

Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY 1 Y 2 and X 1 X 1 X 2 X 2 /X 1 X 2 Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor , the collared lemming, Dicrostonyx torquatus , and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.


2019 ◽  
Author(s):  
Christopher A. Hylton ◽  
Katie Hansen ◽  
Andrew Bourgeois ◽  
John E. Tomkiel

ABSTRACTTo maintain proper ploidy, haploid sex cells must undergo two subsequent meiotic divisions. During meiosis I, homologs pair and remain conjoined until segregation at anaphase. Drosophila melanogaster spermatocytes are unique in that the canonical events of meiosis I including synaptonemal complex (SC) formation, double-strand DNA breaks, and chiasmata are absent. Sex chromosomes pair at intergenic spacer sequences within the heterochromatic rDNA while euchromatin is required to pair and segregate autosomal homologies, suggesting that pairing may be limited to specific sequences. However, previous work generated from genetic segregation assays or observations of late prophase I/prometaphase I chromosome associations fail to differentiate pairing from conjunction. Here, we separately examined the capability of X euchromatin to pair and conjoin using an rDNA-deficient X and a series of Dp(1;Y) chromosomes. Genetic assays showed that duplicated X euchromatin can substitute for endogenous rDNA pairing sites. Segregation was not proportional to homology length, and pairing could be mapped to nonoverlapping sequences within a single Dp(1;Y). Using fluorescent in situ hybridization (FISH) to early prophase I spermatocytes, we showed that pairing occurred with high fidelity at all homologies tested. Pairing was unaffected by the presence of X rDNA, nor could it be explained by rDNA magnification. By comparing genetic and cytological data, we determined that centromere proximal pairings were best at segregation. Segregation was dependent on the conjunction protein Stromalin in Meiosis while the autosomal-specific Teflon was dispensable. Overall, our results suggest that pairing may occur at all homologies, but there may be sequence or positional requirements for conjunction.ARTICLE SUMMARYDrosophila males have evolved a unique system of chromosome segregation in meiosis that lacks recombination. Chromosomes pair at selected sequences suggesting that early steps of meiosis may also differ in this organism. Using Y chromosomes carrying portions of X material, we show that pairing between sex chromosomes can be mediated by sequences other than the previously identified rDNA pairing sites. We propose that pairing may simply be homology-based and may not differ from canonical meiosis observed in females. The main difference in males may be that conjunctive mechanisms that join homologs in the absence of crossovers.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2311
Author(s):  
Roberto de la Fuente ◽  
Florencia Pratto ◽  
Abrahan Hernández-Hernández ◽  
Marcia Manterola ◽  
Pablo López-Jiménez ◽  
...  

Meiosis involves a series of specific chromosome events, namely homologous synapsis, recombination, and segregation. Disruption of either recombination or synapsis in mammals results in the interruption of meiosis progression during the first meiotic prophase. This is usually accompanied by a defective transcriptional inactivation of the X and Y chromosomes, which triggers a meiosis breakdown in many mutant models. However, epigenetic changes and transcriptional regulation are also expected to affect autosomes. In this work, we studied the dynamics of epigenetic markers related to chromatin silencing, transcriptional regulation, and meiotic sex chromosome inactivation throughout meiosis in knockout mice for genes encoding for recombination proteins SPO11, DMC1, HOP2 and MLH1, and the synaptonemal complex proteins SYCP1 and SYCP3. These models are defective in recombination and/or synapsis and promote apoptosis at different stages of progression. Our results indicate that impairment of recombination and synapsis alter the dynamics and localization pattern of epigenetic marks, as well as the transcriptional regulation of both autosomes and sex chromosomes throughout prophase-I progression. We also observed that the morphological progression of spermatocytes throughout meiosis and the dynamics of epigenetic marks are processes that can be desynchronized upon synapsis or recombination alteration. Moreover, we detected an overlap of early and late epigenetic signatures in most mutants, indicating that the normal epigenetic transitions are disrupted. This can alter the transcriptional shift that occurs in spermatocytes in mid prophase-I and suggest that the epigenetic regulation of sex chromosomes, but also of autosomes, is an important factor in the impairment of meiosis progression in mammals.


2010 ◽  
Vol 22 (9) ◽  
pp. 23
Author(s):  
F. Grutzner ◽  
A. Casey ◽  
T. Daish

Monotremes feature an extraordinarily complex sex chromosome system which shares extensive homology with bird sex chromosomes but no homology to sex chromosomes of other mammals (1,2,3). At meiotic prophase I the ten sex chromosomes in platypus (nine in echidna) assemble in a sex chromosome chain. We previously identified the multiple sex chromosomes in platypus and echidna that form the meiotic chain in males (1,2,4). We showed that sex chromosomes assembly in the chain in a specific order (5) and that they segregate alternately (1). In secondary spermatocytes we observed clustering of X and Y chromosomes in sperm (6). Our current research investigates the formation of the synaptonemal complex, recombination and meiotic silencing of monotreme sex chromosomes. Meiotic sex chromosome inactivation (MSCI) has been observed in eutherian mammals, marsupials and birds but has so far not been investigated experimentally in monotremes. We found that during pachytene the X5Y5 end of the chain closely associates with the nucleolus and accumulates repressive chromatin marks (e.g. histone variant mH2A). In contrast to the differential accumulation of mH2A we observe extensive loading of the cohesin SMC3 on sex chromosomes in particular during the pachytene stage of meiotic prophase I. We have also used markers of active transcription and gene expression analysis to investigate gene activity in platypus meiotic cells. I will discuss how these findings contribute to our current understanding of the meiotic organisation of monotreme sex chromosomes and the evolution of MSCI in birds and mammals. (1) Grützner et al. (2004), Nature 432: 913–917.(2) Rens et al. (2007), Genome Biology 16;8(11): R243.(3) Veyrunes et al. (2008), Genome Research, 18(6): 995–1004.(4) Rens et al. (2004), Proceedings of the National Academy of Sciences USA. 101 (46): 16 257–16 261.(5) Daish et al. (2009), Reprod Fertil Dev. 21(8): 976–84.(6) Tsend-Ayush et al. (2009), Chromosoma 118(1): 53–69.


1984 ◽  
Vol 5 (3-4) ◽  
pp. 339-345 ◽  
Author(s):  
Eva Solleder ◽  
M. Schmid

The mitotic karyotype, chromosomal banding patterns and male meiotic chromosomes of Gekko gecko were studied in differentially stained preparations obtained from bone marrow and testes. A chromosome number of 38 was found with a heteromorphic chromosome pair in the male sex, which indicates a XX/XY-mechanism of chromosomal sex determination. The Y-chromosome was found to be larger than the X-chromosome.


Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 631-637 ◽  
Author(s):  
D. G. Bedo

Mitotic and meiotic chromosomes of the Old World screwworm fly, Chrysomya bezziana, were studied using C-banding and quinacrine and counterstain-enhanced fluorescence techniques. The five autosomes in the karyotype are evenly graded in size, with somewhat variable arm ratios. Distinguishing all autosomes on these features alone can be difficult. C-banding produces small centromeric bands in the autosomes, whereas the much longer X and Y chromosomes have extensive dark C-band blocks with intermediate background staining. Most bright fluorescence occurs in the sex chromosomes, particularly the X chromosome, which has remarkable banding detail. Band resolution is greatly increased in mitotic metaphase cells from embryos. Quinacrine staining of mitotic chromosomes produces bright fluorescence at the centromere regions of chromosomes 2, 3, and 4, assisting in their identification. Meiotic chromosomes have distinctly reduced brightness and resolution of fluorescent bands and show marked chromatid asynapsis in the brighter regions of the sex chromosomes. Fluorochromes staining A∙T-rich DNA (quanacrine and 4,6-diamidino-2-phenylindole (DAPI)) produce bright staining in a large proportion of the sex chromosomes. By contrast chromomycin, which binds preferentially to G∙C-rich DNA, stains a much smaller proportion of the sex chromosomes than expected from reciprocal staining. Together with the asynapsis data this indicates that much of the heterochromatin in the sex chromosomes has unusual structural properties.Key words: Chrysomya bezziana, screwworm, karyotype, C-banding, fluorescence, heterochromatin.


2020 ◽  
Vol 46 (6) ◽  
pp. 875-890
Author(s):  
M. V. Monakhova ◽  
M. A. Milakina ◽  
R. M. Trikin ◽  
T. S. Oretskaya ◽  
E. A. Kubareva

2000 ◽  
Vol 275 (37) ◽  
pp. 29178
Author(s):  
Dong Kyung Chang ◽  
Luigi Ricciardiello ◽  
Ajay Goel ◽  
Christina L. Chang ◽  
C. Richard Boland

Author(s):  
Richard P Meisel

Abstract In species with polygenic sex determination, multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that polygenic sex determination is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider polygenic sex determination systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain polygenic sex determination under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain polygenic sex determination than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain polygenic sex determination tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain polygenic sex determination tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that polygenic sex determination will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


Sign in / Sign up

Export Citation Format

Share Document