scholarly journals Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review

2021 ◽  
Vol 22 (6) ◽  
pp. 3154
Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Shih-Hsun Hung ◽  
Eugene Huang ◽  
Chieh-Chen Huang

To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20–50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human’s increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity. Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.

Author(s):  
Dung Minh Ha-Tran ◽  
Trinh Thi My Nguyen ◽  
Shih-Hsun Hung ◽  
Eugene Huang ◽  
Chieh-Chen Huang

To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress in plants is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20%–50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human’s increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity, Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.


Author(s):  
Becky N. Aloo ◽  
Billy A. Makumba ◽  
Ernest R. Mbega

The world’s population is increasing and so are agricultural activities to match the growing demand for food. Conventional agricultural practices generally employ artificial fertilizers to increase crop yields, but these have multiple environmental and human health effects. For decades, environmentalists and sustainability researchers have focused on alternative crop fertilization mechanisms to address these challenges, and biofertilizers have constantly been researched, recommended, and even successfully-adopted for several crops. Biofertilizers are microbial formulations made of indigenous plant growth-promoting rhizobacteria (PGPR) which can naturally improve plant growth either directly or indirectly, through the production of phytohormones, solubilization of soil nutrients, and production of iron-binding metabolites; siderophores. Biofertilizers, therefore, hold immense potential as tools for sustainable crop production especially in the wake of climate change and global warming. Despite the mounting interest in this technology, their full potential has not yet been realized. This review updates our understanding of the PGPR biofertilizers and sustainable crop production. It evaluates the history of these microbial products, assesses their present state of utilization, and also critically propounds on their future prospects for sustainable crop production. Such information is desirable to fully evaluate their potential and can ultimately pave the way for their increased adoption for crop production.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Muhammad Zafar-Ul-Hye ◽  
Fiza Mahmood ◽  
Subhan Danish ◽  
Shahid Hussain ◽  
Mehreen Gul ◽  
...  

2016 ◽  
Vol 92 (8) ◽  
pp. fiw112 ◽  
Author(s):  
Ahmad Mahmood ◽  
Oğuz Can Turgay ◽  
Muhammad Farooq ◽  
Rifat Hayat

2020 ◽  
Vol 4 (1) ◽  
pp. 229-238
Author(s):  
Dayang Rahmanita Simanjuntak ◽  
Halimursyadah Halimursyadah ◽  
Syamsuddin Syamsuddin

Abstrak. Biological seed treatment merupakan salah satu perlakuan benih menggunakan mikroorganisme seperti rizobakteri pemacu pertumbuhan tanaman (RPPT). Penelitian ini bertujuan untuk mengetahui jenis rizobakteri dan kerapatan inokulum yang dapat meningkatkan viabilitas dan vigor benih cabai kadaluarsa. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) pola faktorial dengan 2 faktor dan 3 ulangan. Faktor pertama adalah jenis rizobakteri (R) terdiri atas lima taraf yaitu R1: Necercia sp; R2:Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. Faktor kedua adalah kerapatan inokulum rizobakteri terdiri dari tiga taraf yaitu K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. Hasil penelitian ini menunjukkan bahwa perlakuan benih menggunakan rizobakteri jenis Necercia sp dengan kerapatan inokulum 108 cfu/ml nyata meningkatkan vigor benih pada tolok ukur  indeks vigor yaitu 40% dan Pseudomonas capacia dengan kerapatan inokulum 109 cfu/ml juga merupakan kombinasi perlakuan terbaik dalam meningkatkan berat kering kecambah normal yaitu 69,33 mg.Treatment Of Plant Growth Promoting Rhizobacteria (PGPR)With Multiple Levels of Rhizobacteria Inoculum Density On Viability and Vigor Of Expired Red Chilli Seeds (Capsicum annuum L.Abstract. Biological seed treatment is one of the seed treatment using microorganisms such as plant growth-promoting rhizobacteria (PGPR). This study aims to determine the type of rhizobacteria and inoculum density that can increase the viability and vigor of expired chili seeds. This research uses Completely Randomized Design (CRD) factorial pattern with 2 factors and 3 replications. The first factor is the type of rhizobacteria (R) consists of five levels, namely R1: Necercia sp; R2: Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. The second factor is the density of rhizobacteria inoculum consisting of three levels namely K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. The results of this study showed that the seed treatment using the Necercia sp-type rizobacteria with 108 cfu/ml inoculum density significantly increased the seed vigor on the vigor index benchmark of 40% and Pseudomonas capacia with 109cfu/ml inoculum density was also the best treatment combination in increasing dry weight normal sprout is 69,33 mg. 


2020 ◽  
Vol 66 (2) ◽  
pp. 144-160 ◽  
Author(s):  
Shahnaz Sultana ◽  
Sumonta C. Paul ◽  
Samia Parveen ◽  
Saiful Alam ◽  
Naziza Rahman ◽  
...  

Growth and productivity of rice are negatively affected by soil salinity. However, some salt-tolerant rhizosphere-inhabiting bacteria can improve salt resistance of plants, thereby augmenting plant growth and production. Here, we isolated a total of 53 plant-growth-promoting rhizobacteria (PGPR) from saline and non-saline areas in Bangladesh where electrical conductivity was measured as >7.45 and <1.80 dS/m, respectively. Bacteria isolated from saline areas were able to grow in a salt concentration of up to 2.60 mol/L, contrary to the isolates collected from non-saline areas that did not survive beyond 854 mmol/L. Among the salt-tolerant isolates, Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium, identified by comparing respective sequences of 16S rRNA using the NCBI GenBank, exhibited a higher amount of atmospheric nitrogen fixation, phosphate solubilization, and indoleacetic acid production at 200 mmol/L salt stress. Salt-tolerant isolates exhibited greater resistance to heavy metals and antibiotics, which could be due to the production of an exopolysaccharide layer outside the cell surface. Oryza sativa L. fertilized with B. aryabhattai MS3 and grown under 200 mmol/L salt stress was found to be favoured by enhanced expression of a set of at least four salt-responsive plant genes: BZ8, SOS1, GIG, and NHX1. Fertilization of rice with osmoprotectant-producing PGPR, therefore, could be a climate-change-preparedness strategy for coastal agriculture.


2020 ◽  
Vol 35 (1-2) ◽  
Author(s):  
Tabish Akhtar ◽  
Shubham Kumar ◽  
Sukhdeo Kumar ◽  
M. R. Meena

The growth of plants promoting rhizobacteria (PGPR) has gained widespread importance in agriculture. These are beneficial bacteria found in nature that live actively in plant roots and improve plant growth and increase agricultural productivity.. (PGPR) promoting plant growth shows an important role in the sustainable agricultural industry. The increasing demand for crop production is a major challenge nowadays, with a significant lack of use of synthetic chemical fertilizers and pesticides. The use of PGPR has proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through direct or indirect mechanisms. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and dissolving nutrients for easy uptake by plants. Furthermore, PGPRs show synergistic and antagonistic interactions with microorganisms within the rhizosphere and in bulk soils, which indirectly increases plant growth rates. There are several bacteria species that act as PGPR. This review summarizes the methodology of PGPR as a bio-fertilizer in agriculture.


2007 ◽  
Vol 5 ◽  
pp. 179-186
Author(s):  
А.V. Charina ◽  
V.G. Skripov ◽  
I.G. Budzanivska ◽  
М. V Kovalchuk ◽  
V.P. Polischuk

Some strains of rhizobacteria were investigated for biocontrol efficiency against cucumber green mottle virus (CGMV) in cucumber. Treatment of seeds with three strains of rhizobacteria caused delay in symptom appearance, reduced development of CGMV significantly and enhanced plant growth. Hence, plant growth promoting rhizobacteria could play a major role in reducing of plant virus infections and increasing crop yields.


Sign in / Sign up

Export Citation Format

Share Document