scholarly journals Predicting the Structure and Dynamics of Membrane Protein GerAB from Bacillus subtilis

2021 ◽  
Vol 22 (7) ◽  
pp. 3793
Author(s):  
Sophie Blinker ◽  
Jocelyne Vreede ◽  
Peter Setlow ◽  
Stanley Brul

Bacillus subtilis forms dormant spores upon nutrient depletion. Germinant receptors (GRs) in spore’s inner membrane respond to ligands such as L-alanine, and trigger spore germination. In B. subtilis spores, GerA is the major GR, and has three subunits, GerAA, GerAB, and GerAC. L-Alanine activation of GerA requires all three subunits, but which binds L-alanine is unknown. To date, how GRs trigger germination is unknown, in particular due to lack of detailed structural information about B subunits. Using homology modelling with molecular dynamics (MD) simulations, we present structural predictions for the integral membrane protein GerAB. These predictions indicate that GerAB is an α-helical transmembrane protein containing a water channel. The MD simulations with free L-alanine show that alanine binds transiently to specific sites on GerAB. These results provide a starting point for unraveling the mechanism of L-alanine mediated signaling by GerAB, which may facilitate early events in spore germination.

1991 ◽  
Vol 11 (9) ◽  
pp. 4760-4770
Author(s):  
M McMahon ◽  
R C Schatzman ◽  
J M Bishop

The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.


2014 ◽  
Vol 395 (10) ◽  
pp. 1233-1241 ◽  
Author(s):  
Anja Pomowski ◽  
Fatma Isik Ustok ◽  
James A. Huntington

Abstract Thrombin is generated from prothrombin through cleavage at two sites by the prothrombinase complex. Prothrombinase is composed of a protease, factor (f) Xa, and a cofactor, fVa, which interact on negatively charged phospholipid surfaces and cleave prothrombin into thrombin 300 000 times faster than fXa alone. The balance between bleeding and thrombosis depends on the amount of thrombin produced, and this in turn depends on the function of the prothrombinase complex. How fXa and fVa interact and how improved prothrombin processing is conferred are of critical importance for understanding healthy and pathological blood clotting. Until recently, little structural information was available, and molecular models were built on partial structures with assembly guided by biochemical data. Last year our group published a crystal structure of a prothrombinase complex from the venom of the Australian Eastern Brown snake (known as Pseutarin C). Here we use the crystal structure of Pseutarin C as a starting point for homology modelling and assembly of the full human prothrombinase complex. The interface is complementary in shape and charge, and is consistent with much of the published biochemical data. The model of human prothrombinase presented here provides a powerful resource for contextualizing previous data and for designing future experiments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Klaas Yperman ◽  
Anna C. Papageorgiou ◽  
Romain Merceron ◽  
Steven De Munck ◽  
Yehudi Bloch ◽  
...  

AbstractClathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.


1991 ◽  
Vol 11 (9) ◽  
pp. 4760-4770 ◽  
Author(s):  
M McMahon ◽  
R C Schatzman ◽  
J M Bishop

The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.


2021 ◽  
Author(s):  
Amit Kumar ◽  
Prateek Kumar ◽  
Kumar Udit Saumya ◽  
Rajanish Giri

The NSP6 protein of SARS-CoV-2 is a transmembrane protein, with some regions lying outside the membrane. Besides, a brief role of NSP6 in autophagosome formation, this is not studied significantly. Also, there is no structural information available till date. Based on the prediction by TMHMM server for transmembrane prediction, it is found that the N-terminal residues (1-11), middle region residues (91-112) and C-terminal residues (231-290) lies outside the membrane. Molecular Dynamics (MD) simulations showed that NSP6 consisting of helical structures, whereas membrane outside lying region (91-112) showed partial helicity, which further used as model and obtain disordered type conformation after 1.5 microseconds. Whereas, the residues 231-290 has both helical and beta sheet conformations in its structure model. A 200ns simulations resulted in the loss of beta sheet structures, while helical regions remained intact. Further, we have characterized the residue 91-112 by using reductionist approaches. The NSP6 (91-112) was found disordered like in isolation, which gain helical conformation in different biological mimic environmental conditions. These studies can be helpful to study NSP6 (91-112) interactions with host proteins, where different protein conformation might play significant role. The present study adds up more information about NSP6 protein aspect, which could be exploited for its host protein interaction and pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document