scholarly journals Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew

2021 ◽  
Vol 22 (11) ◽  
pp. 5473
Author(s):  
Gonçalo Laureano ◽  
Ana Rita Cavaco ◽  
Ana Rita Matos ◽  
Andreia Figueiredo

Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid’s (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.

2020 ◽  
Vol 23 ◽  
pp. 02005
Author(s):  
Marina V. Makarkina ◽  
Sergey V. Tokmakov ◽  
Elena T. Ilnitskaya

Plasmopara viticola oomycete is a seasonal pathogen that causes one of the most harmful diseases of the grapevine – downy mildew. The study of the biodiversity of Plasmopara viticola in various zones of viticulture has fundamental goals, as well as practical ones, as it is important for understanding the epidemiological cycle of P. viticola and for refining disease prediction models. The purpose of the work is to study the genetic diversity of P. viticola in the vineyards of the Krasnodar Territory, including on the grape varieties with different levels of resistance to downy mildew. The study was conducted on pathogens samples collected on grape plants of varieties with varying degrees of resistance to downy mildew. The collection of material was carried out in May-August 2019 in various zones of the Krasnodar Territory. 48 samples of P. viticola were analyzed. The DNA markers BER, ISA, CES, GOB, PV91, PV137, PV143, PV144 recommended for studying the genetic diversity of P. viticola were used. The work was performed by PCR. The amplification products were evaluated by the method of fragment analysis. DNA-marker GOB identified 37 alleles of different sizes, PV144 – 20, CES – 10, BER – 3, PV91 – 3, PV137 – 2, ISA – 1, PV143 – 1. It was shown that P. viticola populations are variable on different varieties and in different geographical areas. This study was conducted in the Krasnodar Territory for the first time.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 34
Author(s):  
Camelia Ungureanu ◽  
Liliana Cristina Soare ◽  
Diana Vizitiu ◽  
Mirela Calinescu ◽  
Irina Fierascu ◽  
...  

In order to test some biofungicides, the isolation of Plasmopara viticola was carried out.Plasmopara viticola is a fungus that causes the grapevine downy mildew disease [...]


2020 ◽  
Vol 30 (20) ◽  
pp. 3897-3907.e4 ◽  
Author(s):  
Yann Dussert ◽  
Ludovic Legrand ◽  
Isabelle D. Mazet ◽  
Carole Couture ◽  
Marie-Christine Piron ◽  
...  

2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Yann Dussert ◽  
Jérôme Gouzy ◽  
Sylvie Richart-Cervera ◽  
Isabelle D. Mazet ◽  
Laurent Delière ◽  
...  

Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.


ChemInform ◽  
2012 ◽  
Vol 43 (9) ◽  
pp. no-no
Author(s):  
Muna Ali Abdalla ◽  
Hnin Yu Win ◽  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Anja Schueffler ◽  
...  

2011 ◽  
Vol 64 (10) ◽  
pp. 655-659 ◽  
Author(s):  
Muna Ali Abdalla ◽  
Hnin Yu Win ◽  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Anja Schüffler ◽  
...  

2011 ◽  
Vol 24 (8) ◽  
pp. 938-947 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Hartmut Laatsch

The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.


2020 ◽  
Author(s):  
Michael C. Fontaine ◽  
Frédéric Labbé ◽  
Yann Dussert ◽  
Laurent Delière ◽  
Sylvie Richart-Cervera ◽  
...  

AbstractEurope is the historical cradle of viticulture, but grapevines have been increasingly threatened by pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. Comprehensive population genetic analyses of ~2000 samples from the most important wine-producing countries revealed very low genetic diversity in invasive downy mildew populations worldwide. All the populations originated from one of five native North American lineages, the one parasitizing wild summer grape. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa and, twice independently, Australia. Invasion of Argentina probably represents a tertiary introduction from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. It will help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.


Sign in / Sign up

Export Citation Format

Share Document