scholarly journals Structural Basis for the Diminished Ligand Binding and Catalytic Ability of Human Fetal-Specific CYP3A7

2021 ◽  
Vol 22 (11) ◽  
pp. 5831
Author(s):  
Irina F. Sevrioukova

Cytochrome P450 3A7 (CYP3A7) is a fetal/neonatal liver enzyme that participates in estriol synthesis, clearance of all-trans retinoic acid, and xenobiotic metabolism. Compared to the closely related major drug-metabolizing enzyme in adult liver, CYP3A4, the ligand binding and catalytic capacity of CYP3A7 are substantially reduced. To better understand the structural basis for these functional differences, the 2.15 Å crystal structure of CYP3A7 has been solved. Comparative analysis of CYP3A enzymes shows that decreased structural plasticity rather than the active site microenvironment defines the ligand binding ability of CYP3A7. In particular, a rotameric switch in the gatekeeping amino acid F304 triggers local and long-range rearrangements that transmit to the F-G fragment and alter its interactions with the I-E-D-helical core, resulting in a more rigid structure. Elongation of the β3-β4 strands, H-bond linkage in the substrate channel, and steric constraints in the C-terminal loop further increase the active site rigidity and limit conformational ensemble. Collectively, these structural distinctions lower protein plasticity and change the heme environment, which, in turn, could impede the spin-state transition essential for optimal reactivity and oxidation of substrates.

1997 ◽  
Vol 41 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Adedayo Adedoyin ◽  
Dwight D. Stiff ◽  
David C. Smith ◽  
Marjorie Romkes ◽  
Robert C. Bahnson ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Rajiv K. Kar ◽  
Md. Yousuf Ansari ◽  
Priyanka Suryadevara ◽  
Bikash R. Sahoo ◽  
Ganesh C. Sahoo ◽  
...  

Enzyme adenosine kinase is responsible for phosphorylation of adenosine to AMP and is crucial for parasites which are purine auxotrophs. The present study describes development of robust homology model ofLeishmania donovaniadenosine kinase to forecast interaction phenomenon with inhibitory molecules using structure-based drug designing strategy. Docking calculation using reported organic small molecules and natural products revealed key active site residues such as Arg131 and Asp16 for ligand binding, which is consistent with previous studies. Molecular dynamics simulation of ligand protein complex revealed the importance of hydrogen bonding with active site residues and solvent molecules, which may be crucial for successful development of drug candidates. Precise role of Phe168 residue in the active site was elucidated in this report that provided stability to ligand-protein complex via aromatic-πcontacts. Overall, the present study is believed to provide valuable information to design a new compound with improved activity for antileishmanial therapeutics development.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1828-C1828
Author(s):  
Catarina Coelho ◽  
Tobias Hartmann ◽  
Alessandro Foti ◽  
Teresa Santos-Silva ◽  
Silke Leimkühler ◽  
...  

Aldehyde oxidases (AOX; E.C. 1.2.3.1) are molybdo-flavoenzymes with broad substrate specificity, oxidizing aldehydes and N-heterocycles. AOX belongs to the xanthine oxidase (XO) family of Mo-containing enzymes. The true physiological function of AOX is still unknown, although it is recognized to play a role in the metabolism of compounds with medicinal and toxicological relevance [1]. AOX importance has increased in recent years since it is substituting Cyt-P450 as the central drug-metabolizing system in humans. We have solved the 3D structure of mouse AOX3 to 2.9 Å resolution [2] that was the first structure of an aldehyde oxidase, providing important evidences on substrate and inhibitor specificities between AOX and XO. The complement of AOX proteins in mammals varies from one in humans (hAOX1) to four in rodents (mAOX1, mAOX3, mAOX4 and mAOX3L1) as a result of evolutionary genetic events. Due to this unusual complement of AOX genes in different animal species, conclusions regarding protein metabolism in humans cannot be taken exclusively from the mouse model. Using the human aldehyde oxidase (hAOX1) purified after heterologous expression in Escherichia coli we were able to crystallize it and solve its 3D structure to 2.7 Å resolution (submitted). In addition to the native protein we also solved the structure of an inhibited form of the enzyme to 2.6Å resolution. Analysis of the protein active site and comparison with the structure of the mouse isoform (mAOX3) allowed us to identity, for the first time, the unique features that characterize hAOX1 as an important drug-metabolizing enzyme. In spite of the similarities of both enzymes, they show marked and relevant differences at the Mo active site, substrate tunnel as well as at the FAD site. The ensemble of these structures provides important insights into the role of aldehyde oxidases, contributing to elucidate the clinical metabolism implications of hAOX1 in humans which has particular relevance for novel drug design studies.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


2018 ◽  
Vol 11 (2) ◽  
Author(s):  
Jonathan Cheong ◽  
Jason S. Halladay ◽  
Emile Plise ◽  
Jasleen K. Sodhi ◽  
Laurent Salphati

1992 ◽  
Vol 58 ◽  
pp. 331
Author(s):  
Reiji Kitashiro ◽  
Norimitsu Kurata ◽  
Shinichi Kobayashi ◽  
Yuki Nishimura ◽  
Eiji Uchida ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 812
Author(s):  
Shimeng Qiu ◽  
Yaling Li ◽  
Yuki Imakura ◽  
Shinji Mima ◽  
Tadahiro Hashita ◽  
...  

The endoderm, differentiated from human induced pluripotent stem cells (iPSCs), can differentiate into the small intestine and liver, which are vital for drug absorption and metabolism. The development of human iPSC-derived enterocytes (HiEnts) and hepatocytes (HiHeps) has been reported. However, pharmacokinetic function-deficiency of these cells remains to be elucidated. Here, we aimed to develop an efficient differentiation method to induce endoderm formation from human iPSCs. Cells treated with activin A for 168 h expressed higher levels of endodermal genes than those treated for 72 h. Using activin A (days 0–7), CHIR99021 and PI−103 (days 0–2), and FGF2 (days 3–7), the hiPSC-derived endoderm (HiEnd) showed 97.97% CD−117 and CD−184 double-positive cells. Moreover, HiEnts derived from the human iPSC line Windy had similar or higher expression of small intestine-specific genes than adult human small intestine. Activities of the drug transporter P-glycoprotein and drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5 were confirmed. Additionally, Windy-derived HiHeps expressed higher levels of hepatocyte- and pharmacokinetics-related genes and proteins and showed higher CYP3A4/5 activity than those derived through the conventional differentiation method. Thus, using this novel method, the differentiated HiEnts and HiHeps with pharmacokinetic functions could be used for drug development.


2013 ◽  
Vol 52 (22) ◽  
pp. 13014-13020 ◽  
Author(s):  
Yasunori Okamoto ◽  
Akira Onoda ◽  
Hiroshi Sugimoto ◽  
Yu Takano ◽  
Shun Hirota ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moe Ichikawa ◽  
Hiroki Akamine ◽  
Michika Murata ◽  
Sumito Ito ◽  
Kazuo Takayama ◽  
...  

AbstractCaco-2 cells are widely used as an in vitro intestinal epithelial cell model because they can form a monolayer and predict drug absorption with high accuracy. However, Caco-2 cells hardly express cytochrome P450 (CYP), a drug-metabolizing enzyme. It is known that CYP3A4 is the dominant drug-metabolizing enzyme in human small intestine. In this study, we generated CYP3A4-expressing Caco-2 (CYP3A4-Caco-2) cells and attempted to establish a model that can simultaneously evaluate drug absorption and metabolism. CYP3A4-Caco-2 cells were generated by piggyBac transposon vectors. A tetracycline-controllable CYP3A4 expression cassette (tet-on system) was stably transduced into Caco-2 cells, thus regulating the levels of CYP3A4 expression depending on the doxycycline concentration. The CYP3A4 expression levels in CYP3A4-Caco-2 cells cultured in the presence of doxycycline were similar to or higher than those of adult small intestine. The CYP3A4-Caco-2 cells had enough ability to metabolize midazolam, a substrate of CYP3A4. CYP3A4 overexpression had no negative effects on cell proliferation, barrier function, and P-glycoprotein activity in Caco-2 cells. Thus, we succeeded in establishing Caco-2 cells with CYP3A4 metabolizing activity comparable to in vivo human intestinal tissue. This cell line would be useful in pharmaceutical studies as a model that can simultaneously evaluate drug absorption and metabolism.


Sign in / Sign up

Export Citation Format

Share Document