scholarly journals Mesoglea Extracellular Matrix Reorganization during Regenerative Process in Anemonia viridis (Forskål, 1775)

2021 ◽  
Vol 22 (11) ◽  
pp. 5971
Author(s):  
Maria Parisi ◽  
Annalisa Grimaldi ◽  
Nicolò Baranzini ◽  
Claudia La Corte ◽  
Mariano Dara ◽  
...  

Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.

MRS Bulletin ◽  
2010 ◽  
Vol 35 (8) ◽  
pp. 597-606 ◽  
Author(s):  
Anthony Atala ◽  
Darrell J. Irvine ◽  
Marsha Moses ◽  
Sunil Shaunak

AbstractOne of the major challenges in the field of regenerative medicine is how to optimize tissue regeneration in the body by therapeutically manipulating its natural ability to form scar at the time of injury or disease. It is often the balance between tissue regeneration, a process that is activated at the onset of disease, and scar formation, which develops as a result of the disease process that determines the ability of the tissue or organ to be functional. Using biomaterials as scaffolds often can provide a “bridge” for normal tissue edges to regenerate over small distances, usually up to 1 cm. Larger tissue defect gaps typically require both scaffolds and cells for normal tissue regeneration to occur without scar formation. Various strategies can help to modulate the scar response and can potentially enhance tissue regeneration. Understanding the mechanistic basis of such multivariate interactions as the scar microenvironment, the immune system, extracellular matrix, and inflammatory cytokines may enable the design of tissue engineering and wound healing strategies that directly modulate the healing response in a manner favorable to regeneration.


2019 ◽  
Vol 20 (17) ◽  
pp. 4072 ◽  
Author(s):  
Leora Goldbloom-Helzner ◽  
Dake Hao ◽  
Aijun Wang

Collagen is the most widespread extracellular matrix (ECM) protein in the body and is important in maintaining the functionality of organs and tissues. Studies have explored interventions using collagen-targeting tissue engineered techniques, using collagen hybridizing or collagen binding peptides, to target or treat dysregulated or injured collagen in developmental defects, injuries, and diseases. Researchers have used collagen-targeting peptides to deliver growth factors, drugs, and genetic materials, to develop bioactive surfaces, and to detect the distribution and status of collagen. All of these approaches have been used for various regenerative medicine applications, including neovascularization, wound healing, and tissue regeneration. In this review, we describe in depth the collagen-targeting approaches for regenerative therapeutics and compare the benefits of using the different molecules for various present and future applications.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


2007 ◽  
Vol 29 (1) ◽  
pp. 16-18 ◽  
Author(s):  
Tim Hardingham ◽  
Simon Tew ◽  
Alan Murdoch

All tissues in the body contain an extracellular matrix (ECM) that provides tissue shape and form. We would indeed be the proverbial blob of jelly on the floor if this extracellular structure were not there. So the ECM is an implicit part of being multicellular and having specialized tissues and organs to carry out different functions. As something labelled as ‘structural’, the ECM tends to be taken for granted when tissue functions are being thought about. However, this belies the fact that the ECM structure is essential to support most tissue functions.


2019 ◽  
Vol 18 (3) ◽  
pp. 323-335 ◽  
Author(s):  
Varuna Naga Venkata Arjun Uppuluri ◽  
T. S. Shanmugarajan

Tissue regeneration has become a promising strategy for repairing damaged skin tissues. Among the hydrogels for tissue regeneration applications, topical hydrogels have demonstrated great potential for use as 3D-scaffolds in the burn wound healing process. Currently, no report has been published specifically on icariin-loaded polyvinyl alcohol (PVA)/agar hydrogel on full-thickness burn wounds. In the present study, burn tissue regeneration based on biomimetic hydrogel scaffolds was used for repairing damaged extracellular matrix. Furthermore, a skin burn model was developed in rats, and the icariin-loaded PVA/agar hydrogels were implanted into the damaged portions. The regeneration of the damaged tissues with the help of the icariin-loaded hydrogel group exhibited new translucent skin tissues and repaired extracellular matrix, indicating that the hydrogel can enhance the wound healing process. Moreover, characterization studies such as X-ray diffraction, Fourier-transformed infrared spectroscopy, and differential scanning calorimetry reported the extent of compatibility between icariin and its polymers. Results of the field emission scanning electron microscopy images revealed the extent of the spread of icariin within the polymer-based hydrogel. Furthermore, the wound healing potential, confirmed by histopathological and histochemical findings at the end of 21 days, revealed the visual evidence for the biomimetic property of icariin-loaded PVA/agar hydrogel scaffolds with the extracellular matrix for tissue regeneration.


2021 ◽  
Vol 9 (1) ◽  
pp. e002091
Author(s):  
Cécile Guillon ◽  
Sandra Ferraro ◽  
Sophie Clément ◽  
Marielle Bouschbacher ◽  
Dominique Sigaudo-Roussel ◽  
...  

IntroductionDiabetes is a worldwide health problem that is associated with severe complications. Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine, which result from chronic hyperglycemia, accumulate in the skin of patients with diabetes. The effect of AGEs on fibroblast functionality and their impact on wound healing are still poorly understood.Research design and methodsTo investigate this, we treated cultured human fibroblasts with 0.6 mM glyoxal to induce acute glycation. The behavior of fibroblasts was analyzed by time-lapse monolayer wounding healing assay, seahorse technology and atomic force microscopy. Production of extracellular matrix was studied by transmission electronic microscopy and western blot. Lipid metabolism was investigated by staining of lipid droplets (LDs) with BODIPY 493/503.ResultsWe found that the proliferative and migratory capacities of the cells were greatly reduced by glycation, which could be explained by an increase in fibroblast tensile strength. Measurement of the cellular energy balance did not indicate that there was a change in the rate of oxygen consumption of the fibroblasts. Assessment of collagen I revealed that glyoxal did not influence type I collagen secretion although it did disrupt collagen I maturation and it prevented its deposition in the extracellular matrix. We noted a pronounced increase in the number of LDs after glyoxal treatment. AMPK phosphorylation was reduced by glyoxal treatment but it was not responsible for the accumulation of LDs.ConclusionGlyoxal promotes a change in fibroblast behavior in favor of lipogenic activity that could be involved in delaying wound healing.


2020 ◽  
Vol 8 (42) ◽  
pp. 9744-9755
Author(s):  
Cininta Savitri ◽  
Sang Su Ha ◽  
Emily Liao ◽  
Ping Du ◽  
Kwideok Park

Cell-derived extracellular matrix is an excellent biomaterial toward tissue regeneration, due to its physiologically relevant characteristics for specific tissues and organs.


Author(s):  
Chuanqi Liu ◽  
Ming Pei ◽  
Qingfeng Li ◽  
Yuanyuan Zhang

AbstractContributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell—matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.


Sign in / Sign up

Export Citation Format

Share Document