scholarly journals Developing Regenerative Treatments for Developmental Defects, Injuries, and Diseases Using Extracellular Matrix Collagen-Targeting Peptides

2019 ◽  
Vol 20 (17) ◽  
pp. 4072 ◽  
Author(s):  
Leora Goldbloom-Helzner ◽  
Dake Hao ◽  
Aijun Wang

Collagen is the most widespread extracellular matrix (ECM) protein in the body and is important in maintaining the functionality of organs and tissues. Studies have explored interventions using collagen-targeting tissue engineered techniques, using collagen hybridizing or collagen binding peptides, to target or treat dysregulated or injured collagen in developmental defects, injuries, and diseases. Researchers have used collagen-targeting peptides to deliver growth factors, drugs, and genetic materials, to develop bioactive surfaces, and to detect the distribution and status of collagen. All of these approaches have been used for various regenerative medicine applications, including neovascularization, wound healing, and tissue regeneration. In this review, we describe in depth the collagen-targeting approaches for regenerative therapeutics and compare the benefits of using the different molecules for various present and future applications.

MRS Bulletin ◽  
2010 ◽  
Vol 35 (8) ◽  
pp. 597-606 ◽  
Author(s):  
Anthony Atala ◽  
Darrell J. Irvine ◽  
Marsha Moses ◽  
Sunil Shaunak

AbstractOne of the major challenges in the field of regenerative medicine is how to optimize tissue regeneration in the body by therapeutically manipulating its natural ability to form scar at the time of injury or disease. It is often the balance between tissue regeneration, a process that is activated at the onset of disease, and scar formation, which develops as a result of the disease process that determines the ability of the tissue or organ to be functional. Using biomaterials as scaffolds often can provide a “bridge” for normal tissue edges to regenerate over small distances, usually up to 1 cm. Larger tissue defect gaps typically require both scaffolds and cells for normal tissue regeneration to occur without scar formation. Various strategies can help to modulate the scar response and can potentially enhance tissue regeneration. Understanding the mechanistic basis of such multivariate interactions as the scar microenvironment, the immune system, extracellular matrix, and inflammatory cytokines may enable the design of tissue engineering and wound healing strategies that directly modulate the healing response in a manner favorable to regeneration.


2021 ◽  
Vol 22 (11) ◽  
pp. 5971
Author(s):  
Maria Parisi ◽  
Annalisa Grimaldi ◽  
Nicolò Baranzini ◽  
Claudia La Corte ◽  
Mariano Dara ◽  
...  

Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pawel Olczyk ◽  
Łukasz Mencner ◽  
Katarzyna Komosinska-Vassev

Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors’ action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.


2019 ◽  
Vol 57 (1) ◽  
pp. 736-743 ◽  
Author(s):  
Ali Said ◽  
Fazli Wahid ◽  
Kashif Bashir ◽  
Hafiz Majid Rasheed ◽  
Taous Khan ◽  
...  

2007 ◽  
Vol 29 (1) ◽  
pp. 16-18 ◽  
Author(s):  
Tim Hardingham ◽  
Simon Tew ◽  
Alan Murdoch

All tissues in the body contain an extracellular matrix (ECM) that provides tissue shape and form. We would indeed be the proverbial blob of jelly on the floor if this extracellular structure were not there. So the ECM is an implicit part of being multicellular and having specialized tissues and organs to carry out different functions. As something labelled as ‘structural’, the ECM tends to be taken for granted when tissue functions are being thought about. However, this belies the fact that the ECM structure is essential to support most tissue functions.


2018 ◽  
Vol 6 (42) ◽  
pp. 6767-6780 ◽  
Author(s):  
Arun Prabhu Rameshbabu ◽  
Sayanti Datta ◽  
Kamakshi Bankoti ◽  
Elavarasan Subramani ◽  
Koel Chaudhury ◽  
...  

Impaired wound healing is primarily associated with inadequate angiogenesis, repressed cell migration, deficient synthesis of extracellular matrix (ECM) component/growth factors, and altered inflammatory responses in the wound bed environment.


Sign in / Sign up

Export Citation Format

Share Document