scholarly journals Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation

2021 ◽  
Vol 22 (14) ◽  
pp. 7625
Author(s):  
Fabio Vianello ◽  
Alessandro Cecconello ◽  
Massimiliano Magro

Aiming at creating smart nanomaterials for biomedical applications, nanotechnology aspires to develop a new generation of nanomaterials with the ability to recognize different biological components in a complex environment. It is common opinion that nanomaterials must be coated with organic or inorganic layers as a mandatory prerequisite for applications in biological systems. Thus, it is the nanomaterial surface coating that predominantly controls the nanomaterial fate in the biological environment. In the last decades, interdisciplinary studies involving not only life sciences, but all branches of scientific research, provided hints for obtaining uncoated inorganic materials able to interact with biological systems with high complexity and selectivity. Herein, the fragmentary literature on the interactions between bare abiotic materials and biological components is reviewed. Moreover, the most relevant examples of selective binding and the conceptualization of the general principles behind recognition mechanisms were provided. Nanoparticle features, such as crystalline facets, density and distribution of surface chemical groups, and surface roughness and topography were encompassed for deepening the comprehension of the general concept of recognition patterns.

Author(s):  
Xue Bai ◽  
Jiali Wang ◽  
Qingxin Mu ◽  
Gaoxing Su

Understanding the basic interactions between engineered nanoparticles (ENPs) and biological systems is essential for evaluating ENPs’ safety and developing better nanomedicine. Profound interactions between ENPs and biomolecules such as proteins are inevitable to occur when ENPs are administered or exposed to biological systems, for example, through intravenous injection, oral, or respiration. As a key component of these interactions, protein corona (PC) is immediately formed surrounding the outlayer of ENPs. PC formation is crucial because it gives ENPs a new biological identity by altering not only the physiochemical properties, but also the biobehaviors of ENPs. In the past two decades, most investigations about PC formation were carried out with in vitro systems which could not represent the true events occurring within in vivo systems. Most recently, studies of in vivo PC formation were reported, and it was found that the protein compositions and structures were very different from those formed in vitro. Herein, we provide an in-time review of the recent investigations of this in vivo PC formation of ENPs. In this review, commonly used characterization methods and compositions of in vivo PC are summarized firstly. Next, we highlight the impacts of the in vivo PC formation on absorption, blood circulation, biodistribution, metabolism, and toxicity of administered ENPs. We also introduce the applications of modulating in vivo PC formation in nanomedicine. We further discuss the challenges and future perspectives.


2017 ◽  
Vol 95 (9) ◽  
pp. 903-906 ◽  
Author(s):  
Junjie Chen ◽  
Mark M. Banaszak Holl

Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.


2020 ◽  
Vol 2 (10) ◽  
pp. 4798-4812 ◽  
Author(s):  
Dipesh Khanal ◽  
Qingyu Lei ◽  
Gabriela Pinget ◽  
Daniel A. Cheong ◽  
Archana Gautam ◽  
...  

Protein corona determines fate and cytotoxicity of nanoparticles in biological systems.


2021 ◽  
pp. 117329
Author(s):  
Adewale O. Oladipo ◽  
Lesego G. Modibedi ◽  
Solange I.I. Iku ◽  
Karin de Bruyn ◽  
Thabo T.I. Nkambule ◽  
...  

Biomaterials ◽  
2016 ◽  
Vol 106 ◽  
pp. 111-118 ◽  
Author(s):  
Hui-Wen Chen ◽  
Chen-Yu Huang ◽  
Shu-Yi Lin ◽  
Zih-Syun Fang ◽  
Chen-Hsuan Hsu ◽  
...  

Small ◽  
2020 ◽  
Vol 16 (25) ◽  
pp. 2070141
Author(s):  
Rahul Madathiparambil Visalakshan ◽  
Laura E. González García ◽  
Mercy R. Benzigar ◽  
Arthur Ghazaryan ◽  
Johanna Simon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document