scholarly journals Preliminary Investigation on the Involvement of Cytoskeleton-Related Proteins, DAAM1 and PREP, in Human Testicular Disorders

2021 ◽  
Vol 22 (15) ◽  
pp. 8094
Author(s):  
Massimo Venditti ◽  
Davide Arcaniolo ◽  
Marco De Sio ◽  
Sergio Minucci

Herein, for the first time, the potential relationships between the cytoskeleton-associated proteins DAAM1 and PREP with different testicular disorders, such as classic seminoma (CS), Leydig cell tumor (LCT), and Sertoli cell-only syndrome (SOS), were evaluated. Six CS, two LCT, and two SOS tissue samples were obtained during inguinal exploration in patients with a suspect testis tumor based on clinical examination and ultrasonography. DAAM1 and PREP protein levels and immunofluorescent localization were analyzed. An increased DAAM1 protein level in CS and SOS as compared to non-pathological (NP) tissue was observed, while LCT showed no significant differences. Conversely, PREP protein level increased in LCT, while it decreased in CS and SOS compared to NP tissue. These results were strongly supported by the immunofluorescence staining, revealing an altered localization and signal intensity of DAAM1 and PREP in the analyzed samples, highlighting a perturbed cytoarchitecture. Interestingly, in LCT spermatogonia, a specific DAAM1 nuclear localization was found, probably due to an enhanced testosterone production, as confirmed by the increased protein levels of steroidogenic enzymes. Finally, although further studies are needed to verify the involvement of other formins and microtubule-associated proteins, this report raised the opportunity to indicate DAAM1 and PREP as new potential markers, supporting the cytoskeleton dynamics changes occurring during normal and/or pathological cell differentiation.

2021 ◽  
Vol 22 (4) ◽  
pp. 1834
Author(s):  
Tomoko Okada ◽  
Toshihiko Ogura

Autophagy is an intracellular self-devouring system that plays a central role in cellular recycling. The formation of functional autophagosomes depends on several autophagy-related proteins, including the microtubule-associated proteins 1A/1B light chain 3 (LC3) and the conserved autophagy-related gene 12 (Atg12). We have recently developed a novel scanning electron-assisted dielectric microscope (SE-ADM) for nanoscale observations of intact cells. Here, we used the SE-ADM system to observe LC3- and Atg12-containing autophagosomes in cells labelled in the culture medium with antibodies conjugated to colloidal gold particles. We observed that, during autophagosome formation, Atg12 localized along the actin meshwork structure, whereas LC3 formed arcuate or circular alignments. Our system also showed a difference in the distribution of LC3 and Atg12; Atg12 was broadly distributed while LC3 was more localized. The difference in the spatial distribution demonstrated by our system explains the difference in the size of fluorescent spots due to the fluorescently labelled antibodies observed using optical microscopy. The direct SE-ADM observation of cells should thus be effective in analyses of autophagosome formation.


2002 ◽  
Vol 115 (7) ◽  
pp. 1345-1354 ◽  
Author(s):  
Geoffrey O. Wasteneys

Plant microtubule arrays differ fundamentally from their animal, fungal and protistan counterparts. These differences largely reflect the requirements of plant composite polymer cell walls and probably also relate to the acquisition of chloroplasts. Plant microtubules are usually dispersed and lack conspicuous organizing centres. The key to understanding this dispersed nature is the identification of proteins that interact with and regulate the spatial and dynamic properties of microtubules. Over the past decade, a number of these proteins have been uncovered, including numerous kinesin-related proteins and a 65 kDa class of structural microtubule-associated proteins that appear to be unique to plants. Mutational analysis has identified MOR1, a probable stabilizer of microtubules that is a homologue of the TOGp-XMAP215 class of high-molecular-weight microtubule-associated proteins, and a katanin p60 subunit homologue implicated in the severing of microtubules. The identification of these two proteins provides new insights into the mechanisms controlling microtubule assembly and dynamics, particularly in the dispersed cortical array found in highly polarized plant cells.


Author(s):  
S.B. Andrews ◽  
R.D. Leapman ◽  
P.E. Gallant ◽  
T.S. Reese

As part of a study on protein interactions involved in microtubule (MT)-based transport, we used the VG HB501 field-emission STEM to obtain low-dose dark-field mass maps of isolated, taxol-stabilized MTs and correlated these micrographs with detailed stereo images from replicas of the same MTs. This approach promises to be useful for determining how protein motors interact with MTs. MTs prepared from bovine and squid brain tubulin were purified and free from microtubule-associated proteins (MAPs). These MTs (0.1-1 mg/ml tubulin) were adsorbed to 3-nm evaporated carbon films supported over Formvar nets on 600-m copper grids. Following adsorption, the grids were washed twice in buffer and then in either distilled water or in isotonic or hypotonic ammonium acetate, blotted, and plunge-frozen in ethane/propane cryogen (ca. -185 C). After cryotransfer into the STEM, specimens were freeze-dried and recooled to ca.-160 C for low-dose (<3000 e/nm2) dark-field mapping. The molecular weights per unit length of MT were determined relative to tobacco mosaic virus standards from elastic scattering intensities. Parallel grids were freeze-dried and rotary shadowed with Pt/C at 14°.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


Author(s):  
Nobutaka Hirokawa

In this symposium I will present our studies about the molecular architecture and function of the cytomatrix of the nerve cells. The nerve cell is a highly polarized cell composed of highly branched dendrites, cell body, and a single long axon along the direction of the impulse propagation. Each part of the neuron takes characteristic shapes for which the cytoskeleton provides the framework. The neuronal cytoskeletons play important roles on neuronal morphogenesis, organelle transport and the synaptic transmission. In the axon neurofilaments (NF) form dense arrays, while microtubules (MT) are arranged as small clusters among the NFs. On the other hand, MTs are distributed uniformly, whereas NFs tend to run solitarily or form small fascicles in the dendrites Quick freeze deep etch electron microscopy revealed various kinds of strands among MTs, NFs and membranous organelles (MO). These structures form major elements of the cytomatrix in the neuron. To investigate molecular nature and function of these filaments first we studied molecular structures of microtubule associated proteins (MAP1A, MAP1B, MAP2, MAP2C and tau), and microtubules reconstituted from MAPs and tubulin in vitro. These MAPs were all fibrous molecules with different length and formed arm like projections from the microtubule surface.


Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


2014 ◽  
Vol 1 (1) ◽  
pp. 36 ◽  
Author(s):  
Siti Fatimah ◽  
Muji Rahayu ◽  
Siti Aminah

Background : Egg  is one of the animal protein source, which has delicious taste, easy to digest and highly nutritious. Besides its affordable price, its supply availability is unquestionable as well. However, due to its short storability, it requires special treatment, such as preserving, to store it for long period. One way to preserve the egg is by pickling egg, which generally requires seven to ten days of marinating. During the process of marinating, there will be a visual change of egg white and yolk. Their structures  will be more solid (the occurrence of thickening process) because salinization will lead to protein denaturalization. Consequently, it has an influence as well towards the content of egg white protein of duck egg. This study is aimed to explore the impact of various time of pickling egg towards egg white protein of duck egg. Method  : The study where takes place in a laboratories, is a true experimental study for the reason that the researcher must provide intervention, hence all of potentially confounding variables are manageable. Samples that had been used in this study are duck eggs which were bought from North Brebes. This study is expected to generate data from four various time of pickling egg and control (no treatment). Since there are four samples, accordingly the number of data resulted are twenty. The resulted data will be descriptively presented in table, graph, presentation, and narration. Result  : Protein level examination within duck white egg shows changes  in protein levels that occurs in every variation of pickling egg time, where the average results of the assay of duck egg white protein is 14.94% without treatment (control), in five days of pickling time is 13.68%, in seven days of pickling time is 13.29%, in nine days of pickling time is 12.87% and eleven days of pickling time is 12.78%. Conclusion  : There is a significant impact among the period of pickling time to the protein level degradation of duck white egg. Keywords : Duck egg, period of pickling time, level protein of duck white egg.


Sign in / Sign up

Export Citation Format

Share Document