scholarly journals Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy

2021 ◽  
Vol 22 (15) ◽  
pp. 8310
Author(s):  
Tomohiko Shirakawa ◽  
Aki Miyawaki ◽  
Tatsuo Kawamoto ◽  
Shoichiro Kokabu

The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
A Torrent ◽  
E. Montell ◽  
J. Vergés ◽  
P. Dalmau ◽  
R. Ruhí ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Tsun-Li Cheng ◽  
Zi-Yun Lin ◽  
Keng-Ying Liao ◽  
Wei-Chi Huang ◽  
Cian-Fen Jhuo ◽  
...  

Magnesium lithospermate B (MLB) is a primary hydrophilic component of Danshen, the dried root of Salvia miltiorrhiza used in traditional medicine, and its beneficial effects on obesity-associated metabolic abnormalities were reported in our previous study. The present study investigated the anti-muscle atrophy potential of MLB in mice with high-fat diet (HFD)-induced obesity. In addition to metabolic abnormalities, the HFD mice had a net loss of skeletal muscle weight and muscle fibers and high levels of muscle-specific ubiquitin E3 ligases, namely the muscle atrophy F-box (MAFbx) and muscle RING finger protein 1 (MuRF-1). MLB supplementation alleviated those health concerns. Parallel changes were revealed in high circulating tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), skeletal TNF receptor I (TNFRI), nuclear factor-kappa light chain enhancer of activated B cells (NF-κB), p65 phosphorylation, and Forkhead box protein O1 (FoxO1) as well as low skeletal phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) phosphorylation. The study revealed that MLB prevented obesity-associated skeletal muscle atrophy, likely through the inhibition of MAFbx/MuRF-1-mediated muscular degradation. The activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-α/TNFRI/NF-κB pathway were assumed to be beneficial effects of MLB.


2014 ◽  
Vol 5 (11) ◽  
pp. 2870-2882 ◽  
Author(s):  
Alessia Frati ◽  
Debora Landi ◽  
Cristian Marinelli ◽  
Giacomo Gianni ◽  
Lucia Fontana ◽  
...  

2016 ◽  
Vol 37 (5) ◽  
Author(s):  
Serge Summermatter ◽  
Anais Bouzan ◽  
Eliane Pierrel ◽  
Stefan Melly ◽  
Daniela Stauffer ◽  
...  

ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy.


2002 ◽  
Vol 282 (6) ◽  
pp. C1387-C1395 ◽  
Author(s):  
Esther E. Dupont-Versteegden ◽  
Micheal Knox ◽  
Cathy M. Gurley ◽  
John D. Houlé ◽  
Charlotte A. Peterson

In this study, the role of the calcineurin pathway in skeletal muscle atrophy and atrophy-reducing interventions was investigated in rat soleus muscles. Because calcineurin has been suggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in the face of atrophy-inducing stimuli. Hindlimb suspension and spinal cord transection were used to induce atrophy, and intermittent reloading and exercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg · kg−1 · day−1) was administered to block calcineurin activity. Soleus muscles were studied 14 days after the onset of atrophy. CsA administration did not inhibit the beneficial effects of the two muscle-maintaining interventions, nor did it change muscle mass in control or atrophied muscles, suggesting that calcineurin does not play a role in regulating muscle size during atrophy. However, calcineurin abundance was increased in atrophied soleus muscles, and this was associated with nuclear localization of NFATc1 (a nuclear factor of activated T cells). Therefore, results suggest that calcineurin may be playing opposing roles during skeletal muscle atrophy and under muscle mass-maintaining conditions.


2021 ◽  
Vol 22 (5) ◽  
pp. 2558
Author(s):  
Keisuke Hitachi ◽  
Masashi Nakatani ◽  
Yuri Kiyofuji ◽  
Hidehito Inagaki ◽  
Hiroki Kurahashi ◽  
...  

The loss of skeletal muscle mass (muscle atrophy or wasting) caused by aging, diseases, and injury decreases quality of life, survival rates, and healthy life expectancy in humans. Although long non-coding RNAs (lncRNAs) have been implicated in skeletal muscle formation and differentiation, their precise roles in muscle atrophy remain unclear. In this study, we used RNA-sequencing (RNA-Seq) to examine changes in the expression of lncRNAs in four muscle atrophy conditions (denervation, casting, fasting, and cancer cachexia) in mice. We successfully identified 33 annotated lncRNAs and 18 novel lncRNAs with common expression changes in all four muscle atrophy conditions. Furthermore, an analysis of lncRNA–mRNA correlations revealed that several lncRNAs affected small molecule biosynthetic processes during muscle atrophy. These results provide novel insights into the lncRNA-mediated regulatory mechanism underlying muscle atrophy and may be useful for the identification of promising therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document