scholarly journals Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength

2016 ◽  
Vol 37 (5) ◽  
Author(s):  
Serge Summermatter ◽  
Anais Bouzan ◽  
Eliane Pierrel ◽  
Stefan Melly ◽  
Daniela Stauffer ◽  
...  

ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy.

Author(s):  
Kathryn W. Aguilar-Agon ◽  
Andrew J. Capel ◽  
Jacob W. Fleming ◽  
Darren J. Player ◽  
Neil R. W. Martin ◽  
...  

Abstract Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy.


Author(s):  
Tom Tanjeko Ajime ◽  
Jef Serré ◽  
Rob C I Wüst ◽  
Guy Anselme Mpaka Messa ◽  
Chiel Poffé ◽  
...  

Abstract Introduction Apart from its adverse effects on the respiratory system, cigarette smoking also induces skeletal muscle atrophy and dysfunction. Whether short-term smoking cessation can restore muscle mass and function is unknown. We, therefore, studied the impact of 1- and 2-week smoking cessation on skeletal muscles in a mouse model. Methods Male mice were divided into four groups: Air-exposed (14 weeks); cigarette smoke (CS)-exposed (14 weeks); CS-exposed (13 weeks) followed by 1-week cessation; CS-exposed (12 weeks) followed by 2 weeks cessation to examine exercise capacity, physical activity levels, body composition, muscle function, capillarization, mitochondrial function and protein expression in the soleus, plantaris, and diaphragm muscles. Results CS-induced loss of body and muscle mass was significantly improved within 1 week of cessation due to increased lean and fat mass. Mitochondrial respiration and protein levels of the respiratory complexes in the soleus were lower in CS-exposed mice, but similar to control values after 2 weeks of cessation. Exposing isolated soleus muscles to CS extracts reduced mitochondrial respiration that was reversed after removing the extract. While physical activity was reduced in all groups, exercise capacity, limb muscle force, fatigue resistance, fiber size and capillarization, and diaphragm cytoplasmic HIF-1α were unaltered by CS-exposure. However, CS-induced diaphragm atrophy and increased capillary density were not seen after 2 weeks of smoking cessation. Conclusion In male mice, 2 weeks of smoking cessation reversed smoking-induced mitochondrial dysfunction, limb muscle mass loss, and diaphragm muscle atrophy, highlighting immediate benefits of cessation on skeletal muscles. Implications Our study demonstrates that CS-induced skeletal muscle mitochondrial dysfunction and atrophy are significantly improved by 2 weeks of cessation in male mice. We show for the first time that smoking cessation as short as 1 to 2 weeks is associated with immediate beneficial effects on skeletal muscle structure and function with the diaphragm being particularly sensitive to CS-exposure and cessation. This could help motivate smokers to quit smoking as early as possible. The knowledge that smoking cessation has potential positive extrapulmonary effects is particularly relevant for patients referred to rehabilitation programs and those admitted to hospitals suffering from acute or chronic muscle deterioration yet struggling with smoking cessation.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3731
Author(s):  
Suji Baek ◽  
Jisu Kim ◽  
Byung Seok Moon ◽  
Sun Mi Park ◽  
Da Eun Jung ◽  
...  

Sarcopenia- or cachexia-related muscle atrophy is due to imbalanced energy metabolism and oxidative stress-induced muscle dysfunction. Monoterpenes play biological and pharmacological reactive oxygen species (ROS) scavenging roles. Hence, we explored the effects of camphene, a bicyclic monoterpene, on skeletal muscle atrophy in vitro and in vivo. We treated L6 myoblast cells with camphene and then examined the ROS-related oxidative stress using Mito TrackerTM Red FM and anti-8-oxoguanine antibody staining. To investigate lipid metabolism, we performed real-time polymerase chain reactions, holotomographic microscopy, and respiratory gas analysis. Rat muscle atrophy in in vivo models was observed using 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography and immunocytochemistry. Camphene reversed the aberrant cell size and muscle morphology of L6 myoblasts under starvation and in in vivo models. Camphene also attenuated E3 ubiquitin ligase muscle RING-finger protein-1, mitochondrial fission, and 8-oxoguanine nuclear expression in starved myotubes and hydrogen peroxide (H2O2)-treated cells. Moreover, camphene significantly regulated lipid metabolism in H2O2-treated cells and in vivo models. These findings suggest that camphene may potentially affect skeletal muscle atrophy by regulating oxidative stress and lipid metabolism.


Author(s):  
Li Wang ◽  
Ming-Qing He ◽  
Xi-Yu Shen ◽  
Kang-Zhen Zhang ◽  
Can Zhao ◽  
...  

Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can also improve skeletal muscle performance both in human and mice. We here showed that dexamethasone induced atrophy, evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression , and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLRP3, Caspase-1 and GSDMD. Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine administration ameliorated dexamethasone-induced muscle atrophy both in vivo and in vitro. Moreover, trimetazidine improved exercise tolerance, as evidenced by increased running distance and running time, as well as increased skeletal muscle mass in dexamethasone-treated mice. Mechanically, trimetazidine could reverse dexamethasone-induced activation of pyroptosis both in C2C12 myotubes and in mice. Taken together, our present study demonstrated that NLRP3/GSDMD pathway-mediated pyroptosis was involved in dexamethasone-induced skeletal muscle atrophy. Trimetazidine could partially alleviate dexamethasone-induced skeletal muscle atrophy, and increase the diameter of C2C12 myotubes via inhibiting pyroptosis. Thus, trimetazidine might be a potential therapeutic compound for the prevention of muscle atrophy in glucocorticoid-treated patients.


2007 ◽  
Vol 292 (4) ◽  
pp. C1298-C1304 ◽  
Author(s):  
Emidio E. Pistilli ◽  
Parco M. Siu ◽  
Stephen E. Alway

Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle. Although IL-15 has proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is less clear. The purpose of this study was to determine if skeletal muscle aging and unloading, two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal muscle. We hypothesized that IL-15 mRNA expression would increase as a result of both aging and muscle unloading and that muscle would express the mRNA for a functional trimeric IL-15 receptor (IL-15R). Two models of unloading were used in this study: hindlimb suspension (HS) in rats and wing unloading in quail. The absolute muscle wet weight of plantaris and soleus muscles from aged rats was significantly less when compared with muscles from young adult rats. Although 14 days of HS resulted in reduced muscle mass of plantaris and soleus muscles from young adult animals, this effect was not observed in muscles from aged animals. A significant aging times unloading interaction was observed for IL-15 mRNA in both rat soleus and plantaris muscles. Patagialis (PAT) muscles from aged quail retained a significant 12 and 6% of stretch-induced hypertrophy after 7 and 14 days of unloading, respectively. PAT muscles from young quail retained 15% hypertrophy at 7 days of unloading but regressed to control levels following 14 days of unloading. A main effect of age was observed on IL-15 mRNA expression in PAT muscles at 14 days of overload, 7 days of unloading, and 14 days of unloading. Skeletal muscle also expressed the mRNAs for a functional IL-15R composed of IL-15Rα, IL-2/15R-β, and -γc. Based on these data, we speculate that increases in IL-15 mRNA in response to atrophic stimuli may be an attempt to counteract muscle mass loss in skeletal muscles of old animals. Additional research is warranted to determine the importance of the IL-15/IL-15R system to counter muscle wasting.


2002 ◽  
Vol 282 (6) ◽  
pp. C1387-C1395 ◽  
Author(s):  
Esther E. Dupont-Versteegden ◽  
Micheal Knox ◽  
Cathy M. Gurley ◽  
John D. Houlé ◽  
Charlotte A. Peterson

In this study, the role of the calcineurin pathway in skeletal muscle atrophy and atrophy-reducing interventions was investigated in rat soleus muscles. Because calcineurin has been suggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in the face of atrophy-inducing stimuli. Hindlimb suspension and spinal cord transection were used to induce atrophy, and intermittent reloading and exercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg · kg−1 · day−1) was administered to block calcineurin activity. Soleus muscles were studied 14 days after the onset of atrophy. CsA administration did not inhibit the beneficial effects of the two muscle-maintaining interventions, nor did it change muscle mass in control or atrophied muscles, suggesting that calcineurin does not play a role in regulating muscle size during atrophy. However, calcineurin abundance was increased in atrophied soleus muscles, and this was associated with nuclear localization of NFATc1 (a nuclear factor of activated T cells). Therefore, results suggest that calcineurin may be playing opposing roles during skeletal muscle atrophy and under muscle mass-maintaining conditions.


Author(s):  
Kazuhito Akama ◽  
Yasuka Shimajiri ◽  
Kumiko Kainou ◽  
Ryota Iwasaki ◽  
Reiko Nakao ◽  
...  

Abstract Ubiquitin ligase Cbl-b play a critical role in non-loading-mediated skeletal muscle atrophy: Cbl-b ubiquitinates insulin receptor substrate-1 (IRS-1), an important insulin-like growth factor-1 signaling intermediate molecule, leading to its degradation and a resulting loss in muscle mass. We reported that intramuscular injection of a pentapeptide, DGpYMP, which acts as a mimic of the phosphorylation site in IRS-1, significantly inhibited denervation-induced skeletal muscle loss. In order to explore the possibility of the prevention of muscle atrophy by diet therapy, we examined the effects of oral administration of transgenic rice containing Cblin (Cbl-b inhibitor) peptide (DGYMP) on denervation-induced muscle mass loss in frogs. We generated transgenic rice seeds in which 15 repeats of Cblin peptides with a WQ spacer were inserted into the rice storage protein glutelin for expression. A diet of the transgenic rice seeds had significant inhibitory effects on denervation-induced atrophy of the leg skeletal muscles in frogs, compared with those receiving a diet of wild-type rice.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Giuseppe D’Antona ◽  
Seyed Mohammad Nabavi ◽  
Piero Micheletti ◽  
Arianna Di Lorenzo ◽  
Roberto Aquilani ◽  
...  

Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recentin vitroandin vivostudies investigating the role supplementation with creatine, L-carnitine, andω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hong Zhang ◽  
Mengyi Chi ◽  
Linlin Chen ◽  
Xipeng Sun ◽  
Lili Wan ◽  
...  

Skeletal muscle atrophy is an important feature of cancer cachexia, which can be induced by chemotherapy, and affects the survival and quality of life of cancer patients seriously. No specific drugs for cancer cachexia have been applied in clinical practice. This study explored the therapeutic effect of linalool (LIN) on cisplatin (DDP) induced skeletal muscle atrophy. In vivo, LIN can improve skeletal muscle weight loss, anorexia, muscle strength decline and other cachexia symptoms caused by cisplatin treatment in a Lewis lung cancer tumor bearing mouse model, and cause no adverse effects on the anti-tumour effect. LIN treatment decreased the expression of muscle RING-finger protein-1 (MuRF1) and Atrogin1(MAFbx) in muscle, and the activation of insulin-like growth factor-1 (IGF-1)/protein kinase B (Akt)/forkhead box O (FoxO) pathway was observed. In vitro, LIN alleviated DDP induced C2C12 myotube atrophy, and IGF-1 receptor inhibitor Picropodophyllin (PIC), which had no adverse effect on C2C12 myotube cells, could reverse the protective effect of LIN. These results indicate that LIN down-regulates the expression of Atrogin1 and MuRF1 through the IGF-1/Akt/FoxO pathway, alleviating DDP-induced muscle atrophy and improving cachexia symptoms. LIN has the potential to be developed as a drug against cancer cachexia.


Author(s):  
Linlin Chen ◽  
Hong Zhang ◽  
Mengyi Chi ◽  
Quanjun Yang ◽  
Cheng Guo

Muscle mass is maintained through an interplay between anabolic and catabolic pathways. The ubiquitin-proteasome system plays an important role in the proteolysis progress during skeletal muscle atrophy which can be blocked by some proteasome inhibitors. But few studies have demonstrated the ability of these inhibitors to preserve muscle mass and architecture under catabolic condition in vivo. The insulin-like growth factor-1/phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin (IGF-1/PI3K/Akt/mTOR) pathway was associated with anabolic pathways. The activation of IGF-1 causes muscle hypertrophy; however, it cannot be used as a drug target. Myostatin pathway maintains activation that can induce skeletal muscle atrophy involved with various transcriptional and genetic factors. Skeletal muscle atrophy is a debilitating consequence of multiple chronic diseases and conditions that involve starvation. It reduces treatment options and positive clinical outcomes as well as compromising quality of life and increasing morbidity and mortality. Though considerable research has been undertaken to find the drug target and the molecular mechanisms that improve skeletal muscle atrophy, no drug was approved to treat skeletal muscle atrophy. However, these years, the signaling pathways involved in muscle atrophy were clarified and some effective treatments were currently available to prevent, attenuate, or reverse muscle atrophy for experiment research.


Sign in / Sign up

Export Citation Format

Share Document