scholarly journals HIV Associated Preeclampsia: A Multifactorial Appraisal

2021 ◽  
Vol 22 (17) ◽  
pp. 9157
Author(s):  
Thajasvarie Naicker ◽  
Nalini Govender ◽  
Tashlen Abel ◽  
Nitalia Naidoo ◽  
Merantha Moodley ◽  
...  

Introduction: This review explores angiogenesis, vascular dysfunction, the complement system, RAAS, apoptosis and NETosis as potential pathways that are dysregulated during preeclampsia, HIV infection and ART usage. Results: HIV-1 accessory and matrix proteins are protagonists for the elevation of oxidative stress, apoptosis, angiogenesis, and elevation of adhesion markers. Despite the immunodeficiency during HIV-1 infection, HIV-1 exploits our cellular defence arsenal by escaping cell-mediated lysis, yet HIV-1 infectivity is enhanced via C5a release of TNF-α and IL-6. This review demonstrates that PE is an oxidatively stressed microenvironment associated with increased apoptosis and NETosis, but with a decline in angiogenesis. Immune reconstitution in the duality of HIV-1 and PE by protease inhibitors, HAART and nucleoside reverse transcriptase, affect similar cellular pathways that eventuate in loss of endothelial cell integrity and, hence, its dysfunction. Conclusions: HIV-1 infection, preeclampsia and ARTs differentially affect endothelial cell function. In the synergy of both conditions, endothelial dysfunction predominates. This knowledge will help us to understand the effect of HIV infection and ART on immune reconstitution in preeclampsia.

Author(s):  
Jamie G. Hijmans ◽  
Kelly A. Stockelman ◽  
Vinicius Garcia ◽  
Ma'ayan V. Levy ◽  
L. Madden Brewster ◽  
...  

2019 ◽  
Vol 126 (5) ◽  
pp. 1242-1249
Author(s):  
Jamie G. Hijmans ◽  
Kelly Stockelman ◽  
Ma’ayan Levy ◽  
L. Madden Brewster ◽  
Tyler D. Bammert ◽  
...  

The aims of this study were twofold. The first was to determine if human immunodeficiency virus (HIV)-1 glycoprotein (gp) 120 and transactivator of transcription (Tat) stimulate the release of endothelial microvesicles (EMVs). The second was to determine whether viral protein-induced EMVs are deleterious to endothelial cell function (inducing endothelial cell inflammation, oxidative stress, senescence and increasing apoptotic susceptibility). Human aortic endothelial cells (HAECs) were treated with recombinant HIV-1 proteins Bal gp120 (R5), Lav gp120 (X4), or Tat. EMVs released in response to each viral protein were isolated and quantified. Fresh HAECs were treated with EMVs generated under control conditions and from each of the viral protein conditions for 24 h. EMV release was higher ( P < 0.05) in HAECs treated with R5 (141 ± 21 MV/µl),X4 (132 ± 20 MV/µl), and Tat (130 ± 20 MV/µl) compared with control (61 ± 13 MV/µl). Viral protein EMVs induced significantly higher endothelial cell release of proinflammatory cytokines and expression of cell adhesion molecules than control. Reactive oxygen species production was more pronounced ( P < 0.05) in the R5-, X4- and Tat-EMV-treated cells. In addition, viral protein-stimulated EMVs significantly augmented endothelial cell senescence and apoptotic susceptibility. Concomitant with these functional changes, viral protein-stimulated EMVs disrupted cell expression of micro-RNAs 34a, 126, 146a, 181b, 221, and miR-Let-7a ( P < 0.05). These results demonstrate that HIV-1 gp120 and Tat stimulate microvesicle release from endothelial cells, and these microvesicles confer pathological effects on endothelial cells by inducing inflammation, oxidative stress, and senescence as well as enhancing susceptibility to apoptosis. Viral protein-generated EMVs may contribute to the increased risk of vascular disease in patients with HIV-1.NEW & NOTEWORTHY Human immunodeficiency virus (HIV)-1-related proteins glycoprotein (gp) 120 and transactivator of transcription (Tat)-mediated endothelial damage and dysfunction are poorly understood. Endothelial microvesicles (EMVs) serve as indicators and potent mediators of endothelial dysfunction. In the present study we determined if HIV-1 R5- and X4-tropic gp120 and Tat stimulate EMV release in vitro and if viral protein-induced EMVs are deleterious to endothelial cell function. gp120 and Tat induced a marked increase in EMV release. Viral protein-induced EMVs significantly increased endothelial cell inflammation, oxidative stress, senescence, and apoptotic susceptibility in vitro. gp120- and Tat-derived EMVs promote a proinflammatory, pro-oxidative, prosenescent, and proapoptotic endothelial phenotype and may contribute to the endothelial damage and dysfunction associated with gp120 and Tat.


2017 ◽  
Vol 01 (01) ◽  
Author(s):  
Hiroshi Nomoto ◽  
Hideaki Miyoshi ◽  
Akinobu Nakamura ◽  
Tatsuya Atsumi ◽  
Naoki Manda ◽  
...  

Circulation ◽  
1997 ◽  
Vol 96 (5) ◽  
pp. 1624-1630 ◽  
Author(s):  
C. Roger White ◽  
Jonathan Shelton ◽  
Shi-Juan Chen ◽  
Victor Darley-Usmar ◽  
Leslie Allen ◽  
...  

2017 ◽  
Vol 232 (1) ◽  
pp. R27-R44 ◽  
Author(s):  
D S Boeldt ◽  
I M Bird

Maternal vascular adaptation to pregnancy is critically important to expand the capacity for blood flow through the uteroplacental unit to meet the needs of the developing fetus. Failure of the maternal vasculature to properly adapt can result in hypertensive disorders of pregnancy such as preeclampsia (PE). Herein, we review the endocrinology of maternal adaptation to pregnancy and contrast this with that of PE. Our focus is specifically on those hormones that directly influence endothelial cell function and dysfunction, as endothelial cell dysfunction is a hallmark of PE. A variety of growth factors and cytokines are present in normal vascular adaptation to pregnancy. However, they have also been shown to be circulating at abnormal levels in PE pregnancies. Many of these factors promote endothelial dysfunction when present at abnormal levels by acutely inhibiting key Ca2+ signaling events and chronically promoting the breakdown of endothelial cell–cell contacts. Increasingly, our understanding of how the contributions of the placenta, immune cells, and the endothelium itself promote the endocrine milieu of PE is becoming clearer. We then describe in detail how the complex endocrine environment of PE affects endothelial cell function, why this has contributed to the difficulty in fully understanding and treating this disorder, and how a focus on signaling convergence points of many hormones may be a more successful treatment strategy.


2016 ◽  
Vol 34 (5) ◽  
pp. 308-313 ◽  
Author(s):  
Ying Zhang ◽  
Bin Liao ◽  
Miaoling Li ◽  
Min Cheng ◽  
Yong Fu ◽  
...  

2005 ◽  
Vol 37 (1) ◽  
pp. 335-337 ◽  
Author(s):  
H. Xu ◽  
J.X. Zhang ◽  
J.W. Jones ◽  
J.H. Southard ◽  
M.G. Clemens ◽  
...  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Tyler Bammert ◽  
Jamie Hijmans ◽  
Whitney Reiakvam ◽  
Ma’ayan Levy ◽  
Kelly Stockelman ◽  
...  

Clinical interest in endothelial cell-derived microparticles (EMPs) has increased due to their role in the pathogenesis of vascular disease. Although released by the endothelium, EMPs have autocrine properties that can significantly impact endovascular health. Hyperglycemic conditions, such as diabetes, are known to stimulate EMP release; however, the effects of these glucose-related microparticles on endothelial cell function are not well understood. High glucose concentrations induce endothelial cell apoptosis through a caspase-3-dependent mechanism. The aim of this study was to determine the effect of EMPs derived from a hyperglycemic condition on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3 rd passage) and plated in 6-well plates at a density of 5.0 x 10 5 cell/condition. Cells were incubated with RPMI 1640 media containing 25mM D-glucose (concentration representing a diabetic glycemic state) or 5mM D-glucose (control, normoglycemic, condition) for 48 h to generate EMPs. EMPs derived from both conditions were pelleted by centrifugation and resuspended in culture media. EMP identification (CD144 + expression) and number was determined by flow cytometry. HUVECs (2 x10 6 cells/condition) were treated with EMPs (2:1 ratio) generated from either the hyperglycemic or normoglycemic conditions for 24 h. Thereafter, cells were treated with staurosporine (1μmol/L) for 3 h at 37°C and biotin-ZVKD-fmk inhibitor for 1 h at 37°C. Intracellular concentration of active caspase-3 was determined by enzyme immune assay. Cellular expression of miR-Let7a, an anti-apoptotic microRNA, was determined by RT-PCR using the ΔΔCT normalized to RNU6. Hyperglycemic EMPs resulted in significant increase in basal (1.5 + 0.1 vs 1.0 + 0.1 ng/mL) and staurosporine-stimulated (2.2 + 0.2 vs 1.4 + 0.1 ng/mL) caspase-3 activity compared with normoglycemic EMPs. Additional, the expression of miR-Let7a was markedly reduced (~140%) in response to hyperglycemic EMPs (0.43 + 0.17 fold vs control). These results demonstrate that hyperglycemic-induced EMPs increase endothelial cell apoptotic susceptibility. This apoptotic effect may be mediated, at least in part, by a reduction in miR-Let7a expression.


Sign in / Sign up

Export Citation Format

Share Document