scholarly journals Pantoprazole Attenuates MAPK (ERK1/2, JNK, p38)–NF-κB and Apoptosis Signaling Pathways after Renal Ischemia/Reperfusion Injury in Rats

2021 ◽  
Vol 22 (19) ◽  
pp. 10669
Author(s):  
Michael A. Fawzy ◽  
Sherif A. Maher ◽  
Sally M. Bakkar ◽  
Mahmoud A. El-Rehany ◽  
Moustafa Fathy

Ischemia/reperfusion injury (IRI) in the kidney is the most common cause of acute renal dysfunction through different cell damage mechanisms. This study aimed to investigate, on molecular basics for the first time, the effect of pantoprazole on renal IRI in rats. Different biochemical parameters and oxidative stress markers were assessed. ELISA was used to estimate proinflammatory cytokines. qRT-PCR and western blot were used to investigate the gene and protein expression. Renal histopathological examination was also performed. IRI resulted in tissue damage, elevation of serum levels of creatinine, urea nitrogen, malondialdehyde, TNF-α, IL-6, IL-1β, up-regulation of NF-κB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins. Furthermore, it up-regulated the expression of the Bax gene and down-regulated the expression of the Bcl-2 gene. Treatment of the injured rats with pantoprazole, either single dose or multiple doses, significantly alleviated IRI-induced biochemical and histopathological changes, attenuated the levels of proinflammatory cytokines, down-regulated the expression of NF-κB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins, and the Bax gene, and up-regulated Bcl-2 gene expression. Moreover, treatment with pantoprazole multiple doses has an ameliorative effect that is greater than pantoprazole single-dose. In conclusion, pantoprazole diminished renal IRI via suppression of apoptosis, attenuation of the pro-inflammatory cytokines’ levels, and inhibition of the intracellular signaling pathway MAPK (ERK1/2, JNK, p38)–NF-κB.

2011 ◽  
Vol 165 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Muneaki Matsubara ◽  
Shinya Kanemoto ◽  
Bradley G. Leshnower ◽  
Earl F. Albone ◽  
Robin Hinmon ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Liangtong Li ◽  
Xiangzi Li ◽  
Zhe Zhang ◽  
Li Liu ◽  
Tongtong Liu ◽  
...  

Background: The effects of hydrogen-rich water on PI3K/AKT-mediated apoptosis were studied in rats subjected to myocardial ischemia-reperfusion injury (MIRI). Methdos: Sixty rats were divided randomly into a hydrogen-rich water group and a control group. The hearts were removed and fixed in a Langendorff device. Hearts from the control group were perfused with K-R solution, and hearts from the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two treatment groups were then divided randomly into pre-ischemic period, ischemic period and reperfusion period groups(10 rats per group), which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC) and Western blotting. Caspase-3 activity was detected by spectrophotometry. Results: Among the hydrogen-rich water group, the PI3K/AKT signaling pathway was significantly activated, and FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in ischemia-reperfusion subgroup compared with the preischemic and ischemic subgroups. In the ischemia-reperfusion hydrogen-rich water group, PI3K, AKT and p-AKT mRNA and protein expression levels were increased while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased compared with those in the corresponding control group (p<0.05). Conclusion: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2097764
Author(s):  
Xiaoli Yuan ◽  
Jing Wang ◽  
Yun Zhang

Renal ischemia reperfusion injury (RIRI) is one of the main causes of acute kidney injury. This study aimed to explore whether tubeimoside-1 (TBMS1) could protect against RIRI. RIRI mice model and hypoxia/reoxygenation (H/R)-induced NRK-52E cells were used in this study. The renal pathology was observed by hematoxylin and eosin staining to calculate the tubular injury score. The levels of serum creatinine and blood urine nitrogen were analyzed by a Hitachi model 7180 automatic analyzer. The expressions of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin 6 (IL-6), Bax, cleaved caspase-3, cleaved caspase-9, total caspase-3, and total caspase-9 in renal tissues and NRK-52E cells were detected by western blot analysis. The levels of TNF-α, IL-1β, and IL-6 in serum and NRK-52E cells were measured by a commercial enzyme-linked immunosorbent assay kit. The renal cell apoptosis in renal tissues was analyzed by TUNEL assay, and NRK-52E cell apoptosis was detected by flow cytometry analysis. CCK-8 assay was used to analyze the viability of NRK-52E cells after the indicated treatment. As a result, the renal tissues that were seriously damaged in mice with RIRI could be alleviated by TBMS1. Therefore, 50 mg/kg TBMS1 was chosen for the animal experiment. Renal cell apoptosis was increased in renal tissues of mice with RIRI. These changes could be partially reversed by TBMS1 treatment. TBMS1 improved the viability, and reduced the inflammation and apoptosis of H/R-induced NRK-52E cells. In conclusion, TBMS1 ameliorates RIRI by promoting viability and suppressing apoptosis and inflammation of renal cells.


Sign in / Sign up

Export Citation Format

Share Document