scholarly journals Low-Coverage Whole Genome Sequencing Using Laser Capture Microscopy with Combined Digital Droplet PCR: An Effective Tool to Study Copy Number and Kras Mutations in Early Lung Adenocarcinoma Development

2021 ◽  
Vol 22 (21) ◽  
pp. 12034
Author(s):  
Elizabeth A. Mickler ◽  
Huaxin Zhou ◽  
Tzu L. Phang ◽  
Mark W. Geraci ◽  
Robert S. Stearman ◽  
...  

Defining detailed genomic characterization of early tumor progression is critical to identifying key regulators and pathways in carcinogenesis as potentially druggable targets. In human lung cancer, work to characterize early cancer development has mainly focused on squamous cancer, as the earliest lesions are more proximal in the airways and often accessible by repeated bronchoscopy. Adenocarcinomas are typically located distally in the lung, limiting accessibility for biopsy of pre-malignant and early stages. Mouse lung cancer models recapitulate many human genomic features and provide a model for tumorigenesis with pre-malignant atypical adenomatous hyperplasia and in situ adenocarcinomas often developing contemporaneously within the same animal. Here, we combined tissue characterization and collection by laser capture microscopy (LCM) with digital droplet PCR (ddPCR) and low-coverage whole genome sequencing (LC-WGS). ddPCR can be used to identify specific missense mutations in Kras (Kirsten rat sarcoma viral oncogene homolog, here focused on Kras Q61) and estimate the percentage of mutation predominance. LC-WGS is a cost-effective method to infer localized copy number alterations (CNAs) across the genome using low-input DNA. Combining these methods, the histological stage of lung cancer can be correlated with appearance of Kras mutations and CNAs. The utility of this approach is adaptable to other mouse models of human cancer.

Author(s):  
Amira Bouzidi ◽  
Karim Labreche ◽  
Marine Baron ◽  
Marianne Veyri ◽  
Jérôme Alexandre Denis ◽  
...  

Cell-free DNA (cfDNA) analysis is a minimally invasive method that can be used to detect genomic abnormalities by directly testing a blood sample. This method is particularly useful for immunosuppressed patients, who are at high risk of complications from tissue biopsy. The cfDNA tumor fraction (TF) varies greatly across cancer type and between patients. Thus, the detection of molecular alterations is highly dependent on the circulating TF. In our study, we aimed to calculate the TF and characterize the copy number aberration (CNA) profile of cfDNA from patients with rare malignancies occurring in immunosuppressed environments or immune-privileged sites. To accomplish this, we recruited 36 patients: 19 patients with non-Hodgkin lymphoma (NHL) who were either human immunodeficiency virus (HIV)-positive or organ transplant recipients, 5 HIV-positive lung cancer patients, and 12 patients with glioma. cfDNA was extracted from the patients’ plasma and sequenced using low-coverage whole genome sequencing (LC-WGS). The cfDNA TF was then calculated using the ichorCNA bioinformatic algorithm, based on the CNA profile. In parallel, we performed whole exome sequencing of patient tumor tissue and cfDNA samples with detectable TFs. We detected a cfDNA TF in 29% of immune-suppressed patients (one patient with lung cancer and six with systemic NHL), with a TF range from 8 to 70%. In these patients, the events detected in the CNA profile of cfDNA are well-known events associated with NHL and lung cancer. Moreover, cfDNA CNA profile correlated with the CNA profile of matched tumor tissue. No tumor-derived cfDNA was detected in the glioma patients. Our study shows that tumor genetic content is detectable in cfDNA from immunosuppressed patients with advanced NHL or lung cancer. LC-WGS is a time- and cost-effective method that can help select an appropriate strategy for performing extensive molecular analysis of cfDNA. This technique also enables characterization of CNAs in cfDNA when sufficient tumor content is available. Hence, this approach can be used to collect useful molecular information that is relevant to patient care.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245488
Author(s):  
Karin Wallander ◽  
Jesper Eisfeldt ◽  
Mats Lindblad ◽  
Daniel Nilsson ◽  
Kenny Billiau ◽  
...  

Background Analysis of cell-free tumour DNA, a liquid biopsy, is a promising biomarker for cancer. We have performed a proof-of principle study to test the applicability in the clinical setting, analysing copy number alterations (CNAs) in plasma and tumour tissue from 44 patients with gastro-oesophageal cancer. Methods DNA was isolated from blood plasma and a tissue sample from each patient. Array-CGH was applied to the tissue DNA. The cell-free plasma DNA was sequenced by low-coverage whole-genome sequencing using a clinical pipeline for non-invasive prenatal testing. WISECONDOR and ichorCNA, two bioinformatic tools, were used to process the output data and were compared to each other. Results Cancer-associated CNAs could be seen in 59% (26/44) of the tissue biopsies. In the plasma samples, a targeted approach analysing 61 regions of special interest in gastro-oesophageal cancer detected cancer-associated CNAs with a z-score >5 in 11 patients. Broadening the analysis to a whole-genome view, 17/44 patients (39%) had cancer-associated CNAs using WISECONDOR and 13 (30%) using ichorCNA. Of the 26 patients with tissue-verified cancer-associated CNAs, 14 (54%) had corresponding CNAs in plasma. Potentially clinically actionable amplifications overlapping the genes VEGFA, EGFR and FGFR2 were detected in the plasma from three patients. Conclusions We conclude that low-coverage whole-genome sequencing without prior knowledge of the tumour alterations could become a useful tool for cell-free tumour DNA analysis of total CNAs in plasma from patients with gastro-oesophageal cancer.


Sign in / Sign up

Export Citation Format

Share Document