scholarly journals Enhanced Muscle Strength in Dyslipidemic Mice and Its Relation to Increased Capacity for Fatty Acid Oxidation

2021 ◽  
Vol 22 (22) ◽  
pp. 12251
Author(s):  
Marta Tomczyk ◽  
Alicja Braczko ◽  
Patrycja Jablonska ◽  
Adriana Mika ◽  
Kamil Przyborowski ◽  
...  

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.

2007 ◽  
Vol 292 (6) ◽  
pp. E1782-E1789 ◽  
Author(s):  
Graham P. Holloway ◽  
A. Brianne Thrush ◽  
George J. F. Heigenhauser ◽  
Narendra N. Tandon ◽  
David J. Dyck ◽  
...  

A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass index (BMI) = 23.3 ± 0.7 kg/m2] and obese women (BMI = 37.6 ± 2.2 kg/m2). The mitochondrial marker enzymes citrate synthase (−34%), β-hydroxyacyl-CoA dehydrogenase (−17%), and cytochrome c oxidase (−32%) were reduced ( P < 0.05) in obese participants, indicating that mitochondrial content was diminished. Obesity did not alter the ability of isolated mitochondria to oxidize palmitate; however, fatty acid oxidation was reduced at the whole muscle level by 28% ( P < 0.05) in the obese. Mitochondrial fatty acid translocase (FAT/CD36) did not differ in lean and obese individuals, but mitochondrial FAT/CD36 was correlated with mitochondrial fatty acid oxidation ( r = 0.67, P < 0.05). We conclude that the reduction in fatty acid oxidation in obese individuals is attributable to a decrease in mitochondrial content, not to an intrinsic defect in the mitochondria obtained from skeletal muscle of obese individuals. In addition, it appears that mitochondrial FAT/CD36 may be involved in regulating fatty acid oxidation in human skeletal muscle.


2018 ◽  
Vol 315 (6) ◽  
pp. R1096-R1106 ◽  
Author(s):  
Lidan Zhao ◽  
Ryan P. McMillan ◽  
Guohao Xie ◽  
Samantha G. L. W. Giridhar ◽  
Lance H. Baumgard ◽  
...  

Heat-stressed pigs experience metabolic alterations, including altered insulin profiles, reduced lipid mobilization, and compromised intestinal integrity. This is bioenergetically distinct from thermal neutral pigs on a similar nutritional plane. To delineate differences in substrate preferences between direct and indirect (via reduced feed intake) heat stress effects, skeletal muscle fuel metabolism was assessed. Pigs (35.3 ± 0.8 kg) were randomly assigned to three treatments: thermal neutral fed ad libitum (TN; 21°C, n = 8), heat stress fed ad libitum (HS; 35°C, n = 8), and TN, pair-fed/HS intake (PF; n = 8) for 7 days. Body temperature (TB) and feed intake (FI) were recorded daily. Longissimus dorsi muscle was biopsied for metabolic assays on days −2, 3, and 7 relative to initiation of environmental treatments. Heat stress increased TBand decreased FI ( P < 0.05). Heat stress inhibited incomplete fatty acid oxidation and glucose oxidation ( P < 0.05). Metabolic flexibility decreased in HS pigs compared with TN and PF controls ( P < 0.05). Both phosphofructokinase and pyruvate dehydrogenase (PDH) activities increased in PF ( P < 0.05); however, TN and HS did not differ. Heat stress inhibited citrate synthase and β-hydroxyacyl-CoA dehydrogenase (β-HAD) activities ( P < 0.05). Heat stress did not alter PDH phosphorylation or carnitine palmitoyltransferase 1 abundance but reduced acetyl-CoA carboxylase 1 (ACC1) protein abundance ( P < 0.05). In conclusion, HS decreased skeletal muscle fatty acid oxidation and metabolic flexibility, likely involving β-HAD and ACC regulation.


Author(s):  
Junichi Matsumoto ◽  
Shingo Takada ◽  
Takaaki Furihata ◽  
Hideo Nambu ◽  
Naoya Kakutani ◽  
...  

Background: We recently reported that treatment with rhBDNF (recombinant human brain-derived neurotrophic factor) improved the reduced exercise capacity of mice with heart failure (HF) after myocardial infarction (MI). Since BDNF is reported to enhance fatty acid oxidation, we herein conducted an in vivo investigation to determine whether the improvement in exercise capacity is due to the enhancement of the fatty acid oxidation of skeletal muscle via the AMPKα-PGC1α (adenosine monophosphate-activated protein kinase-α–proliferator-activated receptor-r coactivator-1α) axis. Methods: MI and sham operations were conducted in C57BL/6J mice. Two weeks postsurgery, we randomly divided the MI mice into groups treated with rhBDNF or vehicle for 2 weeks. AMPKα-PGC1α signaling and mitochondrial content in the skeletal muscle of the mice were evaluated by Western blotting and transmission electron microscopy. Fatty acid β-oxidation was examined by high-resolution respirometry using permeabilized muscle fiber. BDNF-knockout mice were treated with 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside, an activator of AMPK. Results: The rhBDNF treatment significantly increased the expressions of phosphorylated AMPKα and PGC1α protein and the intermyofibrillar mitochondrial density in the MI mice. The lowered skeletal muscle mitochondrial fatty acid oxidation was significantly improved in the rhBDNF-treated MI mice. The reduced exercise capacity and mitochondrial dysfunction of the BDNF-knockout mice were improved by 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside. Conclusions: Beneficial effects of BDNF on the exercise capacity of mice with HF are mediated through an enhancement of fatty acid oxidation via the activation of AMPKα-PGC1α in skeletal muscle. BDNF may become a therapeutic option to improve exercise capacity as an alternative or adjunct to exercise training.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 611
Author(s):  
Sihui Ma ◽  
Jiao Yang ◽  
Takaki Tominaga ◽  
Chunhong Liu ◽  
Katsuhiko Suzuki

The low-carbohydrate ketogenic diet (LCKD) is a dietary approach characterized by the intake of high amounts of fat, a balanced amount of protein, and low carbohydrates, which is insufficient for metabolic demands. Previous studies have shown that an LCKD alone may contribute to fatty acid oxidation capacity, along with endurance. In the present study, we combined a 10-week LCKD with an 8-week forced treadmill running program to determine whether training in conjunction with LCKD enhanced fatty acid oxidation capacity, as well as whether the maximal exercise capacity would be affected by an LCKD or training in a mice model. We found that the lipid pool and fatty acid oxidation capacity were both enhanced following the 10-week LCKD. Further, key fatty acid oxidation related genes were upregulated. In contrast, the 8-week training regimen had no effect on fatty acid and ketone body oxidation. Key genes involved in carbohydrate utilization were downregulated in the LCKD groups. However, the improved fatty acid oxidation capacity did not translate into an enhanced maximal exercise capacity. In summary, while favoring the fatty acid oxidation system, an LCKD, alone or combined with training, had no beneficial effects in our intensive exercise-evaluation model. Therefore, an LCKD may be promising to improve endurance in low- to moderate-intensity exercise, and may not be an optimal choice for those partaking in high-intensity exercise.


2008 ◽  
Vol 194 (4) ◽  
pp. 293-309 ◽  
Author(s):  
G. P. Holloway ◽  
J. J. F. P. Luiken ◽  
J. F. C. Glatz ◽  
L. L. Spriet ◽  
A. Bonen

Author(s):  
Hyo-Bum Kwak ◽  
Tracey Woodlief ◽  
Thomas Green ◽  
Julie Cox ◽  
Robert Hickner ◽  
...  

In rodent skeletal muscle, acyl-coenzyme A (CoA) synthetase 5 (ACSL-5) is suggested to localize to the mitochondria but its precise function in human skeletal muscle is unknown. The purpose of these studies was to define the role of ACSL-5 in mitochondrial fatty acid metabolism and the potential effects on insulin action in human skeletal muscle cells (HSKMC). Primary myoblasts isolated from vastus lateralis (obese women (body mass index (BMI) = 34.7 ± 3.1 kg/m2)) were transfected with ACSL-5 plasmid DNA or green fluorescent protein (GFP) vector (control), differentiated into myotubes, and harvested (7 days). HSKMC were assayed for complete and incomplete fatty acid oxidation ([1-14C] palmitate) or permeabilized to determine mitochondrial respiratory capacity (basal (non-ADP stimulated state 4), maximal uncoupled (carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP)-linked) respiration, and free radical (superoxide) emitting potential). Protein levels of ACSL-5 were 2-fold higher in ACSL-5 overexpressed HSKMC. Both complete and incomplete fatty acid oxidation increased by 2-fold (p < 0.05). In permeabilized HSKMC, ACSL-5 overexpression significantly increased basal and maximal uncoupled respiration (p < 0.05). Unexpectedly, however, elevated ACSL-5 expression increased mitochondrial superoxide production (+30%), which was associated with a significant reduction (p < 0.05) in insulin-stimulated p-Akt and p-AS160 protein levels. We concluded that ACSL-5 in human skeletal muscle functions to increase mitochondrial fatty acid oxidation, but contrary to conventional wisdom, is associated with increased free radical production and reduced insulin signaling.


2005 ◽  
Vol 98 (4) ◽  
pp. 1221-1227 ◽  
Author(s):  
D. S. Rubink ◽  
W. W. Winder

AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 μM and at palmitoyl-CoA concentrations ranging from 0 to 100 μM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 ± 0.25 to 0.85 ± 0.13 μM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 μM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.


Sign in / Sign up

Export Citation Format

Share Document