scholarly journals The Rpd3-Complex Regulates Expression of Multiple Cell Surface Recycling Factors in Yeast

2021 ◽  
Vol 22 (22) ◽  
pp. 12477
Author(s):  
Konstantina Amoiradaki ◽  
Kate R. Bunting ◽  
Katherine M. Paine ◽  
Josephine E. Ayre ◽  
Karen Hogg ◽  
...  

Intracellular trafficking pathways control residency and bioactivity of integral membrane proteins at the cell surface. Upon internalisation, surface cargo proteins can be delivered back to the plasma membrane via endosomal recycling pathways. Recycling is thought to be controlled at the metabolic and transcriptional level, but such mechanisms are not fully understood. In yeast, recycling of surface proteins can be triggered by cargo deubiquitination and a series of molecular factors have been implicated in this trafficking. In this study, we follow up on the observation that many subunits of the Rpd3 lysine deacetylase complex are required for recycling. We validate ten Rpd3-complex subunits in recycling using two distinct assays and developed tools to quantify both. Fluorescently labelled Rpd3 localises to the nucleus and complements recycling defects, which we hypothesised were mediated by modulated expression of Rpd3 target gene(s). Bioinformatics implicated 32 candidates that function downstream of Rpd3, which were over-expressed and assessed for capacity to suppress recycling defects of rpd3∆ cells. This effort yielded three hits: Sit4, Dit1 and Ldb7, which were validated with a lipid dye recycling assay. Additionally, the essential phosphatidylinositol-4-kinase Pik1 was shown to have a role in recycling. We propose recycling is governed by Rpd3 at the transcriptional level via multiple downstream target genes.

2011 ◽  
Vol 22 (21) ◽  
pp. 4093-4107 ◽  
Author(s):  
Yufeng Shi ◽  
Christopher J. Stefan ◽  
Sarah M. Rue ◽  
David Teis ◽  
Scott D. Emr

Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sebastian Zeltzer ◽  
Carol A. Zeltzer ◽  
Suzu Igarashi ◽  
Jean Wilson ◽  
Julie G. Donaldson ◽  
...  

ABSTRACT The maintenance of cell surface proteins is critical to the ability of a cell to sense and respond to information in its environment. As such, modulation of cell surface composition and receptor trafficking is a potentially important target of control in virus infection. Sorting endosomes (SEs) are control stations regulating the recycling or degradation of internalized plasma membrane proteins. Here we report that human cytomegalovirus (HCMV), a ubiquitous betaherpesvirus, alters the fate of internalized clathrin-independent endocytosis (CIE) cargo proteins, retaining them in virally reprogrammed SEs. We show that the small G protein ARF6 (ADP ribosylation factor 6), a regulator of CIE trafficking, is highly associated with SE membranes relative to uninfected cells. Combined with the observation of accumulated CIE cargo at the SE, these results suggest that infection diminishes the egress of ARF6 and its cargo from the SE. Expression of ubiquitin-specific protease 6 (USP6), also known as TRE17, was sufficient to restore ARF6 and some ARF6 cargo trafficking to the cell surface in infected cells. The USP activity of TRE17 was required to rescue both ARF6 and associated cargo from SE retention in infection. The finding that TRE17 expression does not rescue the trafficking of all CIE cargos retained at SEs in infection suggests that HCMV hijacks the normal sorting machinery and selectively sorts specific cargos into endocytic microdomains that are subject to alternative sorting fates. IMPORTANCE Cells maintain their surface composition, take up nutrients, and respond to their environment through the internalization and recycling of cargo at the cell surface through endocytic trafficking pathways. During infection with human cytomegalovirus (HCMV), host endocytic membranes are reorganized into a juxtanuclear structure associated with viral assembly and egress. Less appreciated is the effect of this reorganization on the trafficking of host proteins through the endocytic pathway. We show that HCMV retains internalized cargo and the effector of clathrin-independent endocytosis at sorting endosomes. The retention of some cargo, but not all, was reversed by overexpression of a ubiquitin-specific protease, TRE17. Our results demonstrate that HCMV induces profound reprogramming of endocytic trafficking and influences cargo sorting decisions. Further, our work suggests the presence of a novel ubiquitin-regulated checkpoint for the recycling of cargo from sorting endosome. These findings have important implications for host signaling and immune pathways in the context of HCMV infection.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


2020 ◽  
Author(s):  
CC Kim ◽  
GR Healey ◽  
WJ Kelly ◽  
ML Patchett ◽  
Z Jordens ◽  
...  

© 2019, International Society for Microbial Ecology. Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Burkhard R Braun ◽  
Alexander D Johnson

Abstract The common fungal pathogen, Candida albicans, can grow either as single cells or as filaments (hyphae), depending on environmental conditions. Several transcriptional regulators have been identified as having key roles in controlling filamentous growth, including the products of the TUP1, CPH1, and EFG1 genes. We show, through a set of single, double, and triple mutants, that these genes act in an additive fashion to control filamentous growth, suggesting that each gene represents a separate pathway of control. We also show that environmentally induced filamentous growth can occur even in the absence of all three of these genes, providing evidence for a fourth regulatory pathway. Expression of a collection of structural genes associated with filamentous growth, including HYR1, ECE1, HWP1, ALS1, and CHS2, was monitored in strains lacking each combination of TUP1, EFG1, and CPH1. Different patterns of expression were observed among these target genes, supporting the hypothesis that these three regulatory proteins engage in a network of individual connections to downstream genes and arguing against a model whereby the target genes are regulated through a central filamentous growth pathway. The results suggest the existence of several distinct types of filamentous forms of C. albicans, each dependent on a particular set of environmental conditions and each expressing a unique set of surface proteins.


Sign in / Sign up

Export Citation Format

Share Document