scholarly journals Intra-Individual Variability of Human Dental Pulp Stem Cell Features Isolated from the Same Donor

2021 ◽  
Vol 22 (24) ◽  
pp. 13515
Author(s):  
Nela Pilbauerova ◽  
Jan Schmidt ◽  
Tomas Soukup ◽  
Jan Duska ◽  
Jakub Suchanek

It is primarily important to define the standard features and factors that affect dental pulp stem cells (DPSCs) for their broader use in tissue engineering. This study aimed to verify whether DPSCs isolated from various teeth extracted from the same donor exhibit intra-individual variability and what the consequences are for their differentiation potential. The heterogeneity determination was based on studying the proliferative capacity, viability, expression of phenotypic markers, and relative length of telomere chromosomes. The study included 14 teeth (6 molars and 8 premolars) from six different individuals ages 12 to 16. We did not observe any significant intra-individual variability in DPSC size, proliferation rate, viability, or relative telomere length change within lineages isolated from different teeth but the same donor. The minor non-significant variances in phenotype were probably mainly because DPSC cell lines comprised heterogeneous groups of undifferentiated cells independent of the donor. The other variances were seen in DPSC lineages isolated from the same donor, but the teeth were in different stages of root development. We also did not observe any changes in the ability of cells to differentiate into mature cell lines—chondrocytes, osteocytes, and adipocytes. This study is the first to analyze the heterogeneity of DPSC dependent on a donor.

2006 ◽  
Vol 0 (0) ◽  
pp. 060928122958008 ◽  
Author(s):  
Weibo Zhang ◽  
X. Frank Walboomers ◽  
Songtao Shi ◽  
Mingwen Fan ◽  
John A. Jansen

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5808 ◽  
Author(s):  
Yanjing Ou ◽  
Yi Zhou ◽  
Shanshan Liang ◽  
Yining Wang

Background Senescence-related impairment of proliferation and differentiation limits the use of dental pulp cells for tissue regeneration. Deletion of sclerostin improves the dentinogenesis regeneration, while its role in dental pulp senescence is unclear. We investigated the role of sclerostin in subculture-induced senescence of human dental pulp cells (HDPCs) and in the senescence-related decline of proliferation and odontoblastic differentiation. Methods Immunohistochemical staining and qRT-PCR analyses were performed to examine the expression pattern of sclerostin in young (20–30-year-old) and senescent (45–80-year-old) dental pulps. HDPCs were serially subcultured until senescence, and the expression of sclerostin was examined by qRT-PCR analysis. HDPCs with sclerostin overexpression and knockdown were constructed to investigate the role of sclerostin in HDPCs senescence and senescence-related impairment of odontoblastic differentiation potential. Results By immunohistochemistry and qRT-PCR, we found a significantly increased expression level of sclerostin in senescent human dental pulp compared with that of young human dental pulp. Additionally, elevated sclerostin expression was found in subculture-induced senescent HDPCs in vitro. By sclerostin overexpression and knockdown, we found that sclerostin promoted HDPCs senescence-related decline of proliferation and odontoblastic differentiation potential with increased expression of p16, p53 and p21 and downregulation of the Wnt signaling pathway. Discussion The increased expression of sclerostin is responsible for the decline of proliferation and odontoblastic differentiation potential of HDPCs during cellular senescence. Anti-sclerostin treatment may be beneficial for the maintenance of the proliferation and odontoblastic differentiation potentials of HDPCs.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Suryo Kuncorojakti ◽  
Watchareewan Rodprasert ◽  
Supansa Yodmuang ◽  
Thanaphum Osathanon ◽  
Prasit Pavasant ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Xiangfen Li ◽  
Liu Wang ◽  
Qin Su ◽  
Ling Ye ◽  
Xuedong Zhou ◽  
...  

Human dental pulp cells (HDPCs) play a vital role in dentin formation and reparative dentinogenesis, which indicated their potential application in regenerative medicine. However, HDPCs, which can only be obtained from scarce human pulp tissues, also have a limited lifespan in vitro, and stem cells usually lose their original characteristics over a large number of passages. To overcome these challenges, we successfully immortalized human dental pulp cells using the piggyBac system which was employed to efficiently overexpress the SV40 T-Ag, and we then comprehensively described the cell biological behavior. The immortalized human dental pulp cells (iHDPCs) acquired long-term proliferative activity and expressed most HDPC markers. The iHDPCs maintained multiple differentiation potential and could be induced to differentiate into chondrogenic, osteogenic, and adipogenic cells in vitro. We also proved that the iHDPCs gained a stronger ability to migrate than the primary cells, while apoptosis was inhibited. Furthermore, highly proliferative iHDPCs displayed no oncogenicity when subcutaneously implanted into athymic nude mice. Finally, iHDPCs exhibited odontogenic differentiation ability and secreted dentin sialophosphoprotein (DSPP) when combined with a beta-tricalcium phosphate scaffold and bone morphogenetic protein-2 (BMP2) in vivo. Conclusively, the established iHDPCs are a valuable resource for mechanistic study of dental pulp cell differentiation and dental pulp injury repair, as well as for applications in tooth regeneration.


2020 ◽  
Vol 29 (8) ◽  
pp. 521-532 ◽  
Author(s):  
Hongfang Meng ◽  
Lei Hu ◽  
Ying Zhou ◽  
Zhiqiang Ge ◽  
Hua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document