Biodentine Induces Human Dental Pulp Stem Cell Differentiation through Mitogen-activated Protein Kinase and Calcium-/Calmodulin-dependent Protein Kinase II Pathways

2014 ◽  
Vol 40 (7) ◽  
pp. 937-942 ◽  
Author(s):  
Zhirong Luo ◽  
Meetu R. Kohli ◽  
Qing Yu ◽  
Syngcuk Kim ◽  
Tiejun Qu ◽  
...  
2002 ◽  
Vol 13 (6) ◽  
pp. 1940-1952 ◽  
Author(s):  
Qing Xu ◽  
Lu Yu ◽  
Lanying Liu ◽  
Ching Fung Cheung ◽  
Xue Li ◽  
...  

In this report, we identify myogenin as an important transcriptional target under the control of three intracellular signaling pathways, namely, the p38 mitogen-activated protein kinase- (MAPK), calcium-calmodulin–dependent protein kinase- (CaMK), and calcineurin-mediated pathways, during skeletal muscle differentiation. Three cis-elements (i.e., the E box, myocyte enhancer factor [MEF] 2, and MEF3 sites) in the proximal myogenin promoter in response to these three pathways are defined. MyoD, MEF2s, and Six proteins, the trans-activators bound to these cis-elements, are shown to be activated by these signaling pathways. Our data support a model in which all three signaling pathways act in parallel but nonredundantly to control myogenin expression. Inhibition of any one pathway will result in abolished or reduced myogenin expression and subsequent phenotypic differentiation. In addition, we demonstrate that CaMK and calcineurin fail to activate MEF2s in Rhabdomyosarcoma-derived RD cells. For CaMK, we show its activation in response to differentiation signals and its effect on the cytoplasmic translocation of histone deacetylases 5 are not compromised in RD cells, suggesting histone deacetylases 5 cytoplasmic translocation is necessary but not sufficient, and additional signal is required in conjunction with CaMK to activate MEF2 proteins.


1994 ◽  
Vol 14 (7) ◽  
pp. 4419-4426
Author(s):  
W Matten ◽  
I Daar ◽  
G F Vande Woude

In Xenopus oocytes, initiation of maturation is dependent on reduction of cyclic AMP-dependent protein kinase (PKA) activity and the synthesis of the mos proto-oncogene product. Mos is required during meiosis I for the activation of both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Here we show that injection of the catalytic subunit of PKA (PKAc) prevented progesterone-induced synthesis of endogenous Mos as well as downstream MPF and MAPK activation. However, PKAc did not prevent injected soluble Mos product from activating MAPK. While MAPK is activated during Mos-PKAc coinjection, attendant MPF activation is blocked. Additionally, PKAc caused a potent block in the electrophoretic mobility shift of cdc25 that is associated with phosphatase activation. This inhibition of cdc25 activity was not reversed by progesterone, Mos, or MPF. We conclude that PKAc acts as a negative regulator at several points in meiotic maturation by preventing both Mos translation and MPF activation.


2018 ◽  
Vol 11 (549) ◽  
pp. eaar3721 ◽  
Author(s):  
Bishuang Cai ◽  
Canan Kasikara ◽  
Amanda C. Doran ◽  
Rajasekhar Ramakrishnan ◽  
Raymond B. Birge ◽  
...  

Inflammation resolution counterbalances excessive inflammation and restores tissue homeostasis after injury. Failure of resolution contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated by endogenous specialized proresolving mediators (SPMs), which are derived from long-chain fatty acids by lipoxygenase (LOX) enzymes. 5-LOX plays a critical role in the biosynthesis of two classes of SPMs: lipoxins and resolvins. Cytoplasmic localization of the nonphosphorylated form of 5-LOX is essential for SPM biosynthesis, whereas nuclear localization of phosphorylated 5-LOX promotes proinflammatory leukotriene production. We previously showed that MerTK, an efferocytosis receptor on macrophages, promotes SPM biosynthesis by increasing the abundance of nonphosphorylated, cytoplasmic 5-LOX. We now show that activation of MerTK in human macrophages led to ERK-mediated expression of the gene encoding sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), which decreased the cytosolic Ca2+ concentration and suppressed the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). This, in turn, reduced the activities of the mitogen-activated protein kinase (MAPK) p38 and the kinase MK2, resulting in the increased abundance of the nonphosphorylated, cytoplasmic form of 5-LOX and enhanced SPM biosynthesis. In a zymosan-induced peritonitis model, an inflammatory setting in which macrophage MerTK activation promotes resolution, inhibition of ERK activation delayed resolution, which was characterized by an increased number of neutrophils and decreased amounts of SPMs in tissue exudates. These findings contribute to our understanding of how MerTK signaling induces 5-LOX–derived SPM biosynthesis and suggest a therapeutic strategy to boost inflammation resolution in settings where defective resolution promotes disease progression.


Sign in / Sign up

Export Citation Format

Share Document