scholarly journals Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance

2021 ◽  
Vol 22 (24) ◽  
pp. 13521
Author(s):  
Chiara Gentile ◽  
Arianna Finizio ◽  
Guendalina Froechlich ◽  
Anna Morena D’Alise ◽  
Gabriella Cotugno ◽  
...  

Background: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediated by adenosine, which induces pleiotropic immunosuppression by inhibiting antitumor immune populations as well as activating tolerogenic stimuli. Adenosine is produced starting from the highly immunostimulatory ATP, which is progressively hydrolyzed to ADP and adenosine by CD39 and CD73. Cancer cells express high levels of CD39 and CD73 ectoenzymes, thus converting immunostimulatory purinergic signal of ATP into an immunosuppressive signal. For this reason, CD39, CD73 and adenosine receptors are currently investigated in clinical trials as targets for metabolic cancer immunotherapy. This is of particular relevance in the context of oncovirotherapy, as immunogenic cell death induced by oncolytic viruses causes the secretion of a high amount of ATP which is available to be quickly converted into adenosine. Methods: Here, we took advantage of adenosine deaminase enzyme that naturally converts adenosine into the corresponding inosine derivative, devoid of immunoregulatory function. We encoded ADA into an oncolytic targeted herpes virus redirected to human HER2. An engineered ADA with an ectopic signal peptide was also generated to improve enzyme secretion (ADA-SP). Results: Insertion of the expression cassette was not detrimental for viral yield and cancer cell cytotoxicity. The THV_ADA and THV_ADA-SP successfully mediated the secretion of functional ADA enzyme. In in vitro model of human monocytes THP1, this ability of THV_ADA and THV_ADA-SP resulted in the retrieval of eADO-exposed monocytes replication rate, suggesting the proficiency of the viruses in rescuing the immune function. Conclusions: Encoding ADA into oncolytic viruses revealed promising properties for preclinical exploitation.

2009 ◽  
Vol 53 (7) ◽  
pp. 2928-2933 ◽  
Author(s):  
Steven N. Leonard ◽  
Céline Vidaillac ◽  
Michael J. Rybak

ABSTRACT We investigated the activity of telavancin, a novel lipoglycopeptide, alone and combined with gentamicin or rifampin (rifampicin) against strains of Staphylococcus aureus with various vancomycin susceptibilities. Strains tested included methicillin (meticillin)-resistant S. aureus (MRSA) 494, methicillin-sensitive S. aureus (MSSA) 1199, heteroresistant glycopeptide-intermediate S. aureus (hGISA) 1629, which was confirmed by a population analysis profile, and glycopeptide-intermediate S. aureus (GISA) NJ 992. Regimens of 10 mg/kg telavancin daily and 1 g vancomycin every 12 h were investigated alone and combined with 5 mg/kg gentamicin daily or 300 mg rifampin every 8 h in an in vitro model with simulated endocardial vegetations over 96 h. Telavancin demonstrated significantly greater killing than did vancomycin (P < 0.01) for all isolates except MRSA 494 (P = 0.07). Telavancin absolute reductions, in log10 CFU/g, at 96 h were 2.8 ± 0.5 for MRSA 494, 2.8 ± 0.3 for MSSA 1199, 4.2 ± 0.2 for hGISA 1629, and 4.1 ± 0.3 for GISA NJ 992. Combinations of telavancin with gentamicin significantly enhanced killing compared to telavancin alone against all isolates (P < 0.001) except MRSA 494 (P = 0.176). This enhancement was most evident against hGISA 1629, where killing to the level of detection (2 log10 CFU/g) was achieved at 48 h (P < 0.001). The addition of rifampin to telavancin resulted in significant (P < 0.001) enhancement of killing against only MSSA 1199. No changes in telavancin susceptibilities were observed. These results suggest that telavancin may have therapeutic potential, especially against strains with reduced susceptibility to vancomycin. Combination therapy, particularly with gentamicin, may improve bacterial killing against certain strains.


2005 ◽  
Vol 49 (7) ◽  
pp. 2642-2647 ◽  
Author(s):  
Alexander A. Firsov ◽  
Irene Y. Lubenko ◽  
Sergey N. Vostrov ◽  
Yury A. Portnoy ◽  
Stephen H. Zinner

ABSTRACT Prediction of the relative efficacies of different fluoroquinolones is often based on the ratios of the clinically achievable area under the concentration-time curve (AUC) to the MIC, usually with incorporation of the MIC50 or the MIC90 and with the assumption of antibiotic-independent patterns of the AUC/MIC-response relationships. To ascertain whether this assumption is correct, the pharmacodynamics of seven pharmacokinetically different quinolones against two clinical isolates of Staphylococcus aureus were studied by using an in vitro model. Two differentially susceptible clinical isolates of S. aureus were exposed to two 12-h doses of ciprofloxacin (CIP) and one dose of gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), levofloxacin (LVX), moxifloxacin (MXF), and trovafloxacin (TVA) over similar AUC/MIC ranges from 58 to 932 h. A specific bacterial strain-independent AUC/MIC relationship with the antimicrobial effect (IE ) was associated with each quinolone. Based on the IE -log AUC/MIC relationships, breakpoints (BPs) that are equivalent to a CIP AUC/MIC ratio of 125 h were predicted for GRX, MXF, and TVA (75 to 78 h), GAT and GEM (95 to 103 h) and LVX (115 h). With GRX and LVX, the predicted BPs were close to those established in clinical settings (no clinical data on other quinolones are available in the literature). To determine if the predicted AUC/MIC BPs are achievable at clinical doses, i.e., at the therapeutic AUCs (AUCthers), the AUCther/MIC50 ratios were studied. These ratios exceeded the BPs for GAT, GEM, GRX, MXF, TVA, and LVX (750 mg) but not for CIP and LVX (500 mg). AUC/MIC ratios above the BPs can be considered of therapeutic potential for the quinolones. The highest ratios of AUCther/MIC50 to BP were achieved with TVA, MXF, and GEM (2.5 to 3.0); intermediate ratios (1.5 to 1.6) were achieved with GAT and GRX; and minimal ratios (0.3 to 1.2) were achieved with CIP and LVX.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiara Giannasi ◽  
Stefania Niada ◽  
Cinzia Magagnotti ◽  
Enrico Ragni ◽  
Annapaola Andolfo ◽  
...  

Abstract Background In the last years, several clinical trials have proved the safety and efficacy of adipose-derived stem/stromal cells (ASC) in contrasting osteoarthritis (OA). Since ASC act mainly through paracrine mechanisms, their secretome (conditioned medium, CM) represents a promising therapeutic alternative. ASC-CM is a complex cocktail of proteins, nucleic acids, and lipids released as soluble factors and/or conveyed into extracellular vesicles (EV). Here, we investigate its therapeutic potential in an in vitro model of OA. Methods Human articular chondrocytes (CH) were induced towards an OA phenotype by 10 ng/ml TNFα in the presence of either ASC-CM or EV, both deriving from 5 × 105 cells, to evaluate the effect on hypertrophic, catabolic, and inflammatory markers. Results Given the same number of donor cells, our data reveal a higher therapeutic potential of ASC-CM compared to EV alone that was confirmed by its enrichment in chondroprotective factors among which TIMP-1 and -2 stand out. In details, only ASC-CM significantly decreased MMP activity (22% and 29% after 3 and 6 days) and PGE2 expression (up to 40% at day 6) boosted by the inflammatory cytokine. Conversely, both treatments down-modulated of ~ 30% the hypertrophic marker COL10A1. Conclusions These biological and molecular evidences of ASC-CM beneficial action on CH with an induced OA phenotype may lay the basis for its future clinical translation as a cell-free therapeutic in the management of OA.


RSC Advances ◽  
2016 ◽  
Vol 6 (75) ◽  
pp. 71612-71623 ◽  
Author(s):  
Goutam Dey ◽  
Rashmi Bharti ◽  
Indranil Banerjee ◽  
Anjan Kumar Das ◽  
Chandan Kanta Das ◽  
...  

Microbial lipopeptide “Iturin A” is a versatile bio-active molecule with potent antitumor action. Pre-clinical study of this lipopeptide showed very minimum toxicity in rodent model.


1977 ◽  
Vol 32 (2) ◽  
pp. 350-360 ◽  
Author(s):  
Rochelle Hirschhorn ◽  
Eziona Sela

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document