antitumor action
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 67)

H-INDEX

32
(FIVE YEARS 4)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 485
Author(s):  
Ahmet Özdemir ◽  
Halilibrahim Ciftci ◽  
Belgin Sever ◽  
Hiroshi Tateishi ◽  
Masami Otsuka ◽  
...  

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Injung Hwang ◽  
Hyun Tak Jin ◽  
Moon Cheol Kang ◽  
Tae Yoon Kim ◽  
Young Chul Sung ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 22
Author(s):  
Karina J. Lagos ◽  
Hilde H. Buzzá ◽  
Vanderlei S. Bagnato ◽  
María Paulina Romero

Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.


2021 ◽  
Vol 23 (6) ◽  
pp. 1285-1306
Author(s):  
A. N. Chernov ◽  
D. S. Orlov ◽  
O. V. Shamova

Surgical resection was the main approach to cancer therapy, often supplemented by radiation and chemotherapy. The effectiveness of such complex treatment in many cases remains low. In this regard, there is an urgent need to search for new compounds that have selective cytotoxic activity against tumor cells and do not damage normal tissues of the organism. The review discusses mechanisms of antitumor action of cationic antimicrobial peptides (AMPs) of the cathelicidin family - human α-helical cathelicidin (LL-37), and a peptide with β-hairpin conformation – protegrin-1 (PG-1) on lung, breast, pancreas, prostate, squamous skin cancer cells, oral cancer, stomach, ovarian, colorectal cancer, melanoma, leukemia, lymphoma, glioma and neuroblastoma cells. An opportunity of antitumor and pro-oncogenic actions of the peptides and an interplay of these effects with mmunomodulatory action of AMPs on tumor-associated macrophages, natural killer cells and T-lymphocytes is discussed. Possible mechanisms of LL-37 and PG-1 selective action upon tumor cells are presented, including the interaction of LL-37 with G-protein-coupled receptors: the N formylpeptide-2 receptor (FPR2), CXC chemokine-2 (CXCR2), Mas-related gene X2 (MrgX2), purinergic (P2Y11), epidermal (EGFR/ErbB1, ERBb2), insulin-like (IGF1R) growth factors, ligand-gated ion channels (LGIC) and Tolllike (TLR) receptors, with expression varying significantly in different types of tumors, as compared to normal tissues. An increase in the level of LL-37 secretion and expression of its CAMP gene are associated with progression of lung adenocarcinoma, breast, pancreas, and prostate cancer, ovarian cancer, melanoma, and squamous cell carcinoma of the skin. In contrast, CAMP expression and LL-37 secretion are significantly reduced in gastric cancer cells, oral squamous cell cancer, colorectal cancer, leukemia, lymphomas, gliomas, and SH-SY5Y neuroblastoma. Therefore, therapeutic effects of LL-37 can only be used for specific types of tumors. The mechanisms of action of PG-1 on tumor cells are still poorly understood, although the available data indicate that protegrin exhibits a more unidirectional effect, i.e., it damages cell membranes. Protegrin-1 and LL-37 can synergistically enhance the antitumor effects of chemotherapy drugs and have a more pronounced effect on tumor cells, than upon normal cells. Natural AMPs appear to be promising candidates for the role of new antitumor agents, which are also active against malignant metastatic, recurrent multidrug-resistant tumors. On the other hand, peptides such as LL-37, in some cases, exhibit properties that can be considered pro-oncogenic, which indicates a need for further detailed studies on the molecular mechanisms of their action on tumor cells.


2021 ◽  
Vol 1 (31) ◽  
pp. 20-24
Author(s):  
M. V. Kalugin ◽  
K. A. Ivanova ◽  
E. I. Borisova ◽  
S. S. Nakhapetyan ◽  
S. L. Gutorov

In most cases triple negative breast cancer is characterized by an aggressive course of disease and early development of resistance to chemotherapy. Thereafter, the late-line treatment choice, usually after anthracyclines and taxanes, is problematic due to the limited amount of effective and low-toxic cytostatics. In our opinion, in this situation the use of eribulin which possesses unique antitumor action mechanisms is a good option. An illustrative case of a pronounced antitumor effect of eribulin in metastatic breast cancer with triple negative phenotype resistant to previous lines of chemotherapy is presented.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2663
Author(s):  
Hardeep Singh Tuli ◽  
Katrin Sak ◽  
Dhruv Sanjay Gupta ◽  
Ginpreet Kaur ◽  
Diwakar Aggarwal ◽  
...  

Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3341
Author(s):  
Jan Škubník ◽  
Vladimíra Svobodová Pavlíčková ◽  
Jana Psotová ◽  
Silvie Rimpelová

Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 830
Author(s):  
Ellen Emi Kato ◽  
Sandra Coccuzzo Sampaio

Epithelial–mesenchymal transition (EMT) occurs in the early stages of embryonic development and plays a significant role in the migration and the differentiation of cells into various types of tissues of an organism. However, tumor cells, with altered form and function, use the EMT process to migrate and invade other tissues in the body. Several experimental (in vivo and in vitro) and clinical trial studies have shown the antitumor activity of crotoxin (CTX), a heterodimeric phospholipase A2 present in the Crotalus durissus terrificus venom. In this study, we show that CTX modulates the microenvironment of tumor cells. We have also evaluated the effect of CTX on the EMT process in the spheroid model. The invasion of type I collagen gels by heterospheroids (mix of MRC-5 and A549 cells constitutively prepared with 12.5 nM CTX), expression of EMT markers, and secretion of MMPs were analyzed. Western blotting analysis shows that CTX inhibits the expression of the mesenchymal markers, N-cadherin, α-SMA, and αv. This study provides evidence of CTX as a key modulator of the EMT process, and its antitumor action can be explored further for novel drug designing against metastatic cancer.


Author(s):  
Khaled A. Al-Utaibi ◽  
Alessandro Nutini ◽  
Ayesha Sohail ◽  
Robia Arif ◽  
Sümeyye Tunc ◽  
...  

Background: CAR-T cells are chimeric antigen receptor (CAR)-T cells; they are target-specific engineered cells on tumor cells and produce T cell-mediated antitumor responses. CAR-T cell therapy is the “first-line” therapy in immunotherapy for the treatment of highly clonal neoplasms such as lymphoma and leukemia. This adoptive therapy is currently being studied and tested even in the case of solid tumors such as osteosarcoma since, precisely for this type of tumor, the use of immune checkpoint inhibitors remained disappointing. Although CAR-T is a promising therapeutic technique, there are therapeutic limits linked to the persistence of these cells and to the tumor’s immune escape. CAR-T cell engineering techniques are allowed to express interleukin IL-36, and seem to be much more efficient in antitumoral action. IL-36 is involved in the long-term antitumor action, allowing CAR-T cells to be more efficient in their antitumor action due to a “cross-talk” action between the “IL-36/dendritic cells” axis and the adaptive immunity. Methods: This analysis makes the model useful for evaluating cell dynamics in the case of tumor relapses or specific understanding of the action of CAR-T cells in certain types of tumor. The model proposed here seeks to quantify the action and interaction between the three fundamental elements of this antitumor activity induced by this type of adoptive immunotherapy: IL-36, “armored” CAR-T cells (i.e., engineered to produce IL-36) and the tumor cell population, focusing exclusively on the action of this interleukin and on the antitumor consequences of the so modified CAR-T cells. Mathematical model was developed and numerical simulations were carried out during this research. The development of the model with stability analysis by conditions of Routh–Hurwitz shows how IL-36 makes CAR-T cells more efficient and persistent over time and more effective in the antitumoral treatment, making therapy more effective against the “solid tumor”. Findings: Primary malignant bone tumors are quite rare (about 3% of all tumors) and the vast majority consist of osteosarcomas and Ewing’s sarcoma and, approximately, the 20% of patients undergo metastasis situations that is the most likely cause of death. Interpretation: In bone tumor like osteosarcoma, there is a variation of the cellular mechanical characteristics that can influence the efficacy of chemotherapy and increase the metastatic capacity; an approach related to adoptive immunotherapy with CAR-T cells may be a possible solution because this type of therapy is not influenced by the biomechanics of cancer cells which show peculiar characteristics.


Author(s):  
Tamires Cunha Almeida ◽  
Janaína Brandão Seibert ◽  
Tatiane Roquete Amparo ◽  
Gustavo Henrique Bianco de Souza ◽  
Glenda Nicioli da Silva ◽  
...  

: The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document